论文标题

用筷子抓握:在无模型模仿学习中对协变量转移进行精细操纵

Grasping with Chopsticks: Combating Covariate Shift in Model-free Imitation Learning for Fine Manipulation

论文作者

Ke, Liyiming, Wang, Jingqiang, Bhattacharjee, Tapomayukh, Boots, Byron, Srinivasa, Siddhartha

论文摘要

数十亿人使用Chopsticks,这是一种简单而多功能的工具,用于对日常物体进行精细操纵。筷子的小,弯曲和湿滑的尖端构成了拾起小物体的挑战,使其成为一个非常复杂的测试用例。本文利用人类的示范来开发配备自主筷子的机器人操纵器。由于缺乏精细操纵的准确模型,我们探索了无模型的模仿学习,传统上,这会遭受导致概括不良的协变性转移现象。我们提出了两种减少协变量转移的方法,与以前的方法不同,这两种方法都不需要访问交互式专家或模型。首先,我们通过应用一个不变的操作员来减轻单步预测错误以在关键步骤中增加数据支持。其次,我们通过添加有界噪声并结合参数和非参数方法来制定合成纠正标签,以防止误差累积。我们证明了我们建造的真正配备筷子机器人的方法,并观察到代理商的成功率从37.3%增加到80%,这与人类专家的82.6%相当。

Billions of people use chopsticks, a simple yet versatile tool, for fine manipulation of everyday objects. The small, curved, and slippery tips of chopsticks pose a challenge for picking up small objects, making them a suitably complex test case. This paper leverages human demonstrations to develop an autonomous chopsticks-equipped robotic manipulator. Due to the lack of accurate models for fine manipulation, we explore model-free imitation learning, which traditionally suffers from the covariate shift phenomenon that causes poor generalization. We propose two approaches to reduce covariate shift, neither of which requires access to an interactive expert or a model, unlike previous approaches. First, we alleviate single-step prediction errors by applying an invariant operator to increase the data support at critical steps for grasping. Second, we generate synthetic corrective labels by adding bounded noise and combining parametric and non-parametric methods to prevent error accumulation. We demonstrate our methods on a real chopstick-equipped robot that we built, and observe the agent's success rate increase from 37.3% to 80%, which is comparable to the human expert performance of 82.6%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源