论文标题

具有同型加密的实用保密数据科学:概述

Practical Privacy-Preserving Data Science With Homomorphic Encryption: An Overview

论文作者

Iezzi, Michela

论文摘要

由于越来越多的机密数据,隐私已引起了人们日益增长的兴趣。担心与第三方共享数据,获得富有成果的见解,困扰企业环境的可能性;价值不仅存在于数据中,还属于提供分析结果的算法和模型的知识产权。这种僵局锁定了“ AS-A-Service”范式中高性能计算资源的可用性,也可以通过协作观点与科学界的知识交流。隐私数据科学可以使用私人数据和算法,而不会冒险将其隐私风险。常规的加密方案无法在不首先解密的情况下处理加密数据。同态加密(HE)是一种加密形式,可以在保留明文的功能和格式的同时计算加密数据。在意大利中央银行有趣的用例的背景下,本文重点介绍如何利用他和数据科学来设计和开发隐私企业应用程序。我们提出了一项对数据科学与HE之间孔的主要同态加密技术的调查以及最新的进步。

Privacy has gained a growing interest nowadays due to the increasing and unmanageable amount of produced confidential data. Concerns about the possibility of sharing data with third parties, to gain fruitful insights, beset enterprise environments; value not only resides in data but also in the intellectual property of algorithms and models that offer analysis results. This impasse locks both the availability of high-performance computing resources in the "as-a-service" paradigm and the exchange of knowledge with the scientific community in a collaborative view. Privacy-preserving data science enables the use of private data and algorithms without putting at risk their privacy. Conventional encryption schemes are not able to work on encrypted data without decrypting them first. Homomorphic Encryption (HE) is a form of encryption that allows the computation of encrypted data while preserving the features and the format of the plaintext. Against the background of interesting use cases for the Central Bank of Italy, this article focuses on how HE and data science can be leveraged for the design and development of privacy-preserving enterprise applications. We propose a survey of main Homomorphic Encryption techniques and recent advances in the conubium between data science and HE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源