论文标题

在溢出和不合规的实验中识别因果关系

Identifying Causal Effects in Experiments with Spillovers and Non-compliance

论文作者

DiTraglia, Francis J., Garcia-Jimeno, Camilo, O'Keeffe-O'Donovan, Rossa, Sanchez-Becerra, Alejandro

论文摘要

本文展示了如何使用随机饱和实验设计来识别和估计存在溢出物的因果影响 - 一种人的治疗可能会影响他人的结果(单方面不遵守) - 只能提供受试者的治疗方法,而不是被迫接受。在这种情况下,有两个独特的因果效应引起了人们的关注:直接效应量化了一个人自己的待遇如何改变她的结果,而间接效应量化了同龄人的治疗方式改变了她的结果。我们认为已知群体内溢出的情况,并且采用决策对于同龄人的实现优惠是不变的。在这种情况下,我们指出了在柔性的随机系数模型中确定经过治疗的直接和间接处理的影响,该模型允许将异质的治疗效果和内源性选择进入治疗。我们继续提出一个可行的估计器,该估计量是一致且渐近正常的,随着组的数量和大小的增加。我们将估计器应用于大规模的工作安置服务实验中的数据,并发现愿意接受该计划的人对就业可能性的负面治疗效果。这些负面的溢出被自己的服用阳性直接治疗效应所抵消。

This paper shows how to use a randomized saturation experimental design to identify and estimate causal effects in the presence of spillovers--one person's treatment may affect another's outcome--and one-sided non-compliance--subjects can only be offered treatment, not compelled to take it up. Two distinct causal effects are of interest in this setting: direct effects quantify how a person's own treatment changes her outcome, while indirect effects quantify how her peers' treatments change her outcome. We consider the case in which spillovers occur within known groups, and take-up decisions are invariant to peers' realized offers. In this setting we point identify the effects of treatment-on-the-treated, both direct and indirect, in a flexible random coefficients model that allows for heterogeneous treatment effects and endogenous selection into treatment. We go on to propose a feasible estimator that is consistent and asymptotically normal as the number and size of groups increases. We apply our estimator to data from a large-scale job placement services experiment, and find negative indirect treatment effects on the likelihood of employment for those willing to take up the program. These negative spillovers are offset by positive direct treatment effects from own take-up.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源