论文标题
SoftgyM:对可变形物体操纵的深入增强学习的基准测试
SoftGym: Benchmarking Deep Reinforcement Learning for Deformable Object Manipulation
论文作者
论文摘要
由于其高维状态表示和复杂的动力学,操纵可变形物体长期以来一直是机器人技术的挑战。深度强化学习的最新成功为学习通过数据驱动方法操纵可变形的对象提供了一个有希望的方向。但是,现有的强化学习基准仅涵盖具有直接状态可观察性和简单低维动力学或相对简单的基于图像的环境(例如具有刚性对象的环境)的任务。在本文中,我们提出了SoftGym,这是一套开源模拟基准,用于操纵可变形对象,具有标准的OpenAI Gym API和用于创建新环境的Python界面。我们的基准将在这一重要领域实现可重现的研究。此外,我们在这些任务上评估了各种算法,并突出了增强学习算法的挑战,包括处理具有较高内在维度且可以部分观察到的状态表示。实验和分析表明,在可变形的对象操纵的背景下,现有方法的优势和局限性可以帮助指向未来方法开发的前进方向。可以在我们的项目网站上找到学习政策的代码和视频。
Manipulating deformable objects has long been a challenge in robotics due to its high dimensional state representation and complex dynamics. Recent success in deep reinforcement learning provides a promising direction for learning to manipulate deformable objects with data driven methods. However, existing reinforcement learning benchmarks only cover tasks with direct state observability and simple low-dimensional dynamics or with relatively simple image-based environments, such as those with rigid objects. In this paper, we present SoftGym, a set of open-source simulated benchmarks for manipulating deformable objects, with a standard OpenAI Gym API and a Python interface for creating new environments. Our benchmark will enable reproducible research in this important area. Further, we evaluate a variety of algorithms on these tasks and highlight challenges for reinforcement learning algorithms, including dealing with a state representation that has a high intrinsic dimensionality and is partially observable. The experiments and analysis indicate the strengths and limitations of existing methods in the context of deformable object manipulation that can help point the way forward for future methods development. Code and videos of the learned policies can be found on our project website.