论文标题

大量MIMO系统中的联合渠道估计和反馈的深度学习

Deep Learning for Joint Channel Estimation and Feedback in Massive MIMO Systems

论文作者

Guo, Jiajia, Chen, Tong, Jin, Shi, Li, Geoffrey Ye, Wang, Xin, Hou, Xiaolin

论文摘要

当基础站的下行链路通道状态信息(CSI)可用时,可以完全利用大量多输入多输出(MIMO)在频分化双链(FDD)模式中的巨大潜力。但是,由于大量的大量天线引起的大量反馈开销,因此很难获得准确的CSI。在本文中,我们提出了一个基于深度学习的联合信道估计和反馈框架,该框架全面实现了FDD大规模MIMO系统中下行链路通道的估计,压缩和重建。构建了两个网络以明确和隐式执行估计和反馈。显式网络采用多信号到噪声差异(SNRS)技术,以获取单个训练有素的通道估计子网,该子网与不同的SNR一起工作,并采用了深层剩余网络来重建频道,而隐构网络则直接压缩飞行员并将其发送回飞行员并将其发送回网络参数。量化模块还旨在生成数据含数据的比特流。仿真结果表明,两个提出的网络表现出出色的重建性能,并且对不同的环境和量化误差表现出色。

The great potentials of massive Multiple-Input Multiple-Output (MIMO) in Frequency Division Duplex (FDD) mode can be fully exploited when the downlink Channel State Information (CSI) is available at base stations. However, the accurate CSI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas. In this paper, we propose a deep learning based joint channel estimation and feedback framework, which comprehensively realizes the estimation, compression, and reconstruction of downlink channels in FDD massive MIMO systems. Two networks are constructed to perform estimation and feedback explicitly and implicitly. The explicit network adopts a multi-Signal-to-Noise-Ratios (SNRs) technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels, while the implicit network directly compresses pilots and sends them back to reduce network parameters. Quantization module is also designed to generate data-bearing bitstreams. Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源