论文标题
经典正交多项式的相关函数
A correlation function for the classical orthogonal polynomials
论文作者
论文摘要
定义和确定经典正交多项式的相关函数。相关函数在两个变量中遵守二阶差异方程。 Gegenbauer,Chebyshev和Legendre多项式的相关函数可以写为4F3超几何函数。对于Jacobi多项式,结果是F2 Appell函数。对于广义的laguerre多项式,结果是汇合的超几何函数,对于Hermite多项式,那里的多项式仅占单个项。
A correlation function of the classical orthogonal polynomials is defined and determined. The correlation function obeys a second order difference equation in two variables. The correlation function for the Gegenbauer, Chebyshev and Legendre polynomials can be written as a 4F3 hypergeometric function. For the Jacobi polynomials the result is an F2 Appell function. For the Generalized Laguerre polynomials the result is a confluent hypergeometric function and for the Hermite polynomials there rests only a single term.