论文标题
quasirandom拉丁正方形
Quasirandom Latin squares
论文作者
论文摘要
我们证明了Garbe等人的猜想。 [arxiv:2010.07854]当且仅当每一个2x3模式的密度为1/720+o(1)时,就表明拉丁正方形是quasirandom。在任何N中不能用2x2或1xn代替2x3的意义上,这是最好的。
We prove a conjecture by Garbe et al. [arXiv:2010.07854] by showing that a Latin square is quasirandom if and only if the density of every 2x3 pattern is 1/720+o(1). This result is the best possible in the sense that 2x3 cannot be replaced with 2x2 or 1xN for any N.