论文标题
通过从演示中学习,自主在眼内导航手术工具
Autonomously Navigating a Surgical Tool Inside the Eye by Learning from Demonstration
论文作者
论文摘要
视网膜手术中的一个基本挑战是将手术工具安全地导航到视网膜表面的所需目标位置,同时避免对周围组织的损害,该过程通常需要数十微米的精度。在实践中,外科医生依靠深度估计技能来将工具贴在视网膜方面进行定位,以执行工具范围的行动任务,这可能容易出现人为错误。为了减轻这种不确定性,先前的工作通过估计与视网膜的工具尖端距离并提供触觉或听觉反馈,从而引入了帮助外科医生的方法。但是,自动化工具范围的任务本身仍然无法解决,并且在很大程度上没有探索。这样的能力(如果可靠地自动化)可以作为简化复杂程序并减少组织损伤的机会的基础。为此,我们建议通过学习模仿该任务的专家演示来自动化工具运动任务。具体来说,训练了一个深网,可以根据记录的视觉伺服宣传到用户指定的给定目标,以模仿视网膜上各个位置的专家轨迹。提出的自主导航系统在模拟和实验中使用有机硅眼幻象进行了评估。我们表明,该网络可以在物理实验中可靠地浏览137微米精度的各个所需位置,平均在模拟中进行94微米,并概括地概括了看不见的情况,例如在存在辅助手术工具,可变的眼睛背景和亮度条件下。
A fundamental challenge in retinal surgery is safely navigating a surgical tool to a desired goal position on the retinal surface while avoiding damage to surrounding tissues, a procedure that typically requires tens-of-microns accuracy. In practice, the surgeon relies on depth-estimation skills to localize the tool-tip with respect to the retina in order to perform the tool-navigation task, which can be prone to human error. To alleviate such uncertainty, prior work has introduced ways to assist the surgeon by estimating the tool-tip distance to the retina and providing haptic or auditory feedback. However, automating the tool-navigation task itself remains unsolved and largely unexplored. Such a capability, if reliably automated, could serve as a building block to streamline complex procedures and reduce the chance for tissue damage. Towards this end, we propose to automate the tool-navigation task by learning to mimic expert demonstrations of the task. Specifically, a deep network is trained to imitate expert trajectories toward various locations on the retina based on recorded visual servoing to a given goal specified by the user. The proposed autonomous navigation system is evaluated in simulation and in physical experiments using a silicone eye phantom. We show that the network can reliably navigate a needle surgical tool to various desired locations within 137 microns accuracy in physical experiments and 94 microns in simulation on average, and generalizes well to unseen situations such as in the presence of auxiliary surgical tools, variable eye backgrounds, and brightness conditions.