论文标题

块共聚物熔体的相分离动力学中的光诱导的键断裂:耗散粒子动力学研究

Photo-induced bond breaking during phase separation kinetics of block copolymer melts: A dissipative particle dynamics study

论文作者

Singh, Ashish Kumar, Chauhan, Avinash, Puri, Sanjay, Singh, Awaneesh

论文摘要

使用耗散粒子动力学(DPD)仿真方法,我们研究了$ d = 3 $中块共聚物(BCP)中的相分离动力学,受到外部刺激(例如光)。初始均匀的BCP熔体迅速淬灭至温度$ t <t_c $,其中$ t_c $是临界温度。然后,我们让系统通过“ ON”和“ OFF”循环的交替光。一个周期的周期破坏了刺激敏感的键在BCP熔体中连接块A和B的刺激敏感键,并且在循环期间,断裂的键重新连接。通过模拟光的效果,我们隔离了相位分离的场景,始于灯(集1);系统内的合作相互作用使其可以进行显微相机的分离。当相位分离以启动(集合2)开始时,由于键断裂,系统会经历巨噬剂的分离。在这里,我们通过分别改变集合1和2的键键概率来报告交替循环对域形态的作用。我们观察到缩放函数取决于上面提到的条件,这些条件会改变各个周期中不断发展的形态的时间尺度。但是,在所有情况下,平均域大小都尊重幂律增长:$ r(t)\ sim t^ϕ $在后期,这里$ ϕ $是动态增长指数。在早期的短暂扩散增长($ ϕ \ sim 1/3 $)之后,$ ϕ $说明了从粘性流体动力($ ϕ \ sim 1 $)到惯性流体动力($ ϕ \ sim 2/3 $)的交叉。

Using dissipative particle dynamics (DPD) simulation method, we study the phase separation dynamics in block copolymer (BCP) melt in $d=3$, subjected to external stimuli such as light. An initial homogeneous BCP melt is rapidly quenched to a temperature $T < T_c$, where $T_c$ is the critical temperature. We then let the system go through alternate light "on" and "off" cycles. An on-cycle breaks the stimuli-sensitive bonds connecting both the blocks A and B in BCP melt, and during the off-cycle, broken bonds reconnect. By simulating the effect of light, we isolate scenarios where phase separation begins with the light off (set 1); the cooperative interactions within the system allow it to undergo microphase separation. When the phase separation starts with the light on (set 2), the system undergoes macrophase separation due to the bond breaking. Here, we report the role of alternate cycles on domain morphology by varying bond-breaking probability for both the sets 1 and 2, respectively. We observe that the scaling functions depend upon the conditions mentioned above that change the time scale of the evolving morphologies in various cycles. However, in all the cases, the average domain size respects the power-law growth: $R(t)\sim t^ϕ$ at late times, here $ϕ$ is the dynamic growth exponent. After a short-lived diffusive growth ($ϕ\sim 1/3$) at early times, $ϕ$ illustrates a crossover from the viscous hydrodynamic ($ϕ\sim 1$) to the inertial hydrodynamic ($ϕ\sim 2/3$) regimes at late times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源