论文标题
延续性双曲线
Continuum-wise hyperbolicity
论文作者
论文摘要
我们引入了连续的双曲线,相对于连续理论的双曲线的概括。我们讨论拓扑双曲线和连续性双曲线之间的相似性和差异。证明了CW-Hyperbolic同构的阴影引理以L遮阳属性的形式证明,并在这种情况下获得了光谱分解。在证明中,我们将仅使用CW传输率的双曲线度量的fathi \ cite {fat89}构建,获得双曲线CW-metric。我们还介绍了CWN-Hyperbolicity,展示了这些系统的这些系统的示例,用于\ Mathbb {n} $中的任意大$ n \,并获得这些系统的进一步动力学属性,例如同一时期的周期性点的有限性。我们证明,$ \ mathbb {s}^2 $的同构是由拓扑上的双曲线同质形态引起的,$ \ mathbb {t}^2 $是连续的,是连续的,是连续的,在t拓扑上,在线性cw-anososov diffeoMorphism在linear上,$ \ mathbb $ \ mathbb $ \ mathbb} CW2-Hyperbolic。
We introduce continuum-wise hyperbolicity, a generalization of hyperbolicity with respect to the continuum theory. We discuss similarities and differences between topological hyperbolicity and continuum-wise hyperbolicity. A shadowing lemma for cw-hyperbolic homeomorphisms is proved in the form of the L-shadowing property and a Spectral Decomposition is obtained in this scenario. In the proof we generalize the construction of Fathi \cite{Fat89} of a hyperbolic metric using only cw-expansivity, obtaining a hyperbolic cw-metric. We also introduce cwN-hyperbolicity, exhibit examples of these systems for arbitrarily large $N\in\mathbb{N}$ and obtain further dynamical properties of these systems such as finiteness of periodic points with the same period. We prove that homeomorphisms of $\mathbb{S}^2$ that are induced by topologically hyperbolic homeomorphisms of $\mathbb{T}^2$ are continuum-wise-hyperbolic and topologically conjugate to linear cw-Anosov diffeomorphisms of $\mathbb{S}^2$, being in particular cw2-hyperbolic.