论文标题
量子异常,非铁皮皮肤效应和开放系统中的纠缠熵
Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems
论文作者
论文摘要
我们研究了非拓扑拓扑在频谱特性和开放系统的纠缠结构中的作用。就光谱理论而言,我们对非铁质拓扑的两种解释进行了统一的理解:量子异常和非铁皮皮肤效应,其中大量光谱极大地取决于边界条件。在这种情况下,从磁性单极存在的情况下,可以理解拓扑缺陷的内在较高维度的皮肤效应,需要存在拓扑缺陷。在纠缠结构方面,我们研究了fermionic开放系统的稳态,其liouvillian(速度)光谱寄托了非热拓扑。我们通过使用纠缠熵分析了零维开放系统中耗散驱动的主要稳态,并将它们与拓扑超导体的Majorana边缘模式相关联。我们还根据纠缠频谱定义的痕量索引,分析了具有非热拓扑光谱的一维开放费米系统的稳态,并将其与Chern绝缘体的手性边缘状态相关联。这些对应关系表明,纠缠在周期性边界条件下会产生圆形的非偏射电流,而皮肤效应电压在开放边界条件下具有Fermion积累。最后,我们讨论了几个相关主题,例如相互作用系统中Liouvillian动力学和皮肤效应的伪谱行为。
We investigate the roles of non-Hermitian topology in spectral properties and entanglement structures of open systems. In terms of spectral theory, we give a unified understanding of two interpretations of non-Hermitian topology: quantum anomaly and non-Hermitian skin effects, in which the bulk spectra extremely depend on the boundary conditions. In this context, the fact that the intrinsic higher-dimensional skin effects under the full open boundary condition need the presence of the topological defects is understood in terms of the anomalous fermion production such as the Rubakov-Callan effect in the presence of the magnetic monopole. In terms of the entanglement structure, we investigate steady states of fermionic open systems whose Liouvillian (rapidity) spectra host non-Hermitian topology. We analyze dissipation-driven Majorana steady states in zero-dimensional open systems and relate them to the Majorana edge modes of topological superconductors by using the entanglement entropy. We also analyze a steady state of a one-dimensional open Fermi system with a non-Hermitian topological spectrum and relate it to the chiral edge states of the Chern insulator on the basis of the trace index defined from the entanglement spectrum. These correspondences indicate that the entanglement generates circular nonreciprocal currents under the periodic boundary condition and the skin-effect voltage with fermion accumulation under the open boundary condition. Finally, we discuss several related topics such as pseudospectral behaviors of Liouvillian dynamics and skin effects in interacting systems.