论文标题
带有字符串和$ r^2 $纠正的规范标量现场通货膨胀
Canonical Scalar Field Inflation with String and $R^2$-Corrections
论文作者
论文摘要
假设标量场控制着通货膨胀时代,我们检查了字符串和$ f(r)$重力校正对规范标量场膨胀的通货膨胀动力学的综合效应,这构成了以下约束,即原始引力波的速度等于光的速度。特别是,我们研究了在$αr^2 $校正的情况下,爱因斯坦 - 加斯 - 邦网重力的通货膨胀动力学,其中$α$是免费的耦合参数。在纯爱因斯坦 - 加斯 - 邦纳特引力中的情况下,意识到,引力波通过光速在时空传播,这构成了这样的约束,即高斯 - 基因偶联功能$ξ(ϕ)$ obeys $ obeys ddot $ \ ddot $ \ ddot $ \ ddot $ \ ddot =随后,提取了标量场的时间导数的关系,这意味着模型的标量函数是高斯 - 桥网耦合和标量电势,是互连的,并简单地指定了其中一个立即指定了另一个。在此框架中,自由指定$ξ(ϕ)$并从运动方程式提取相应的标量电位很有用,但相反的情况仍然可行。我们证明该模型可以产生可行的通货膨胀现象学和广泛的自由参数。另外,一个可以提及的问题是,当$ r^2 $更正的耦合参数$α$是$α<10^{ - 3} $中的普朗克单位时,$ r^2 $项实际上可以忽略不计,并且一个人在纯净的einstein-gauss-bonnet理论中获得了相同的运动方程式,但是,$ night $ night night time night time nike nike nike nike niver time { f} {\ partial r} $是非零的。
Assuming that a scalar field controls the inflationary era, we examine the combined effects of string and $f(R)$ gravity corrections on the inflationary dynamics of canonical scalar field inflation, imposing the constraint that the speed of the primordial gravitational waves is equal to that of light's. Particularly, we study the inflationary dynamics of an Einstein-Gauss-Bonnet gravity in the presence of $αR^2$ corrections, where $α$ is a free coupling parameter. As it was the case in the pure Einstein-Gauss-Bonnet gravity, the realization that the gravitational waves propagate through spacetime with the velocity of light, imposes the constraint that the Gauss-Bonnet coupling function $ξ(ϕ)$ obeys the differential equation $\ddotξ=H\dotξ$, where $H$ is the Hubble rate. Subsequently, a relation for the time derivative of the scalar field is extracted which implies that the scalar functions of the model, which are the Gauss-Bonnet coupling and the scalar potential, are interconnected and simply designating one of them specifies the other immediately. In this framework, it is useful to freely designate $ξ(ϕ)$ and extract the corresponding scalar potential from the equations of motion but the opposite is still feasible. We demonstrate that the model can produce a viable inflationary phenomenology and for a wide range of the free parameters. Also, a mentionable issue is that when the coupling parameter $α$ of the $R^2$ correction term is $α<10^{-3}$ in Planck Units, the $R^2$ term is practically negligible and one obtains the same equations of motion as in the pure Einstein-Gauss-Bonnet theory, however the dynamics still change, since now the time derivative of $\frac{\partial f}{\partial R}$ is nonzero.