论文标题
最小化人造原子量子状态的歧视时间
Minimizing the discrimination time for quantum states of an artificial atom
论文作者
论文摘要
超导人造原子的量子状态之间的快速区分是量子信息处理的重要组成部分。在电路量子电动力学中,增加了读取谐振器中的信号场幅度,分散耦合到人工原子,可提高信号噪声比率并提高测量强度。在这里,我们在读出功率的两个数量级上采用了这种效果,这是通过二聚体的约瑟夫森交界阵列放大器与大型动态范围的独特组合,以及我们在读量的质量数(qnd)中,我们的颗粒状铝制原子的读数(QND)均与readout re resortor相对较大$ $ $ $ $ nline $ $ $ $ $ $ $ $ $ $ $ $ $ $ nevertlline $ resortor $。使用贝叶斯推断,这使我们能够检测到量子的跳跃比读数谐振器响应时间$ 2/κ$更快,其中$κ$是读取谐振器的带宽。
Fast discrimination between quantum states of superconducting artificial atoms is an important ingredient for quantum information processing. In circuit quantum electrodynamics, increasing the signal field amplitude in the readout resonator, dispersively coupled to the artificial atom, improves the signal-to-noise ratio and increases the measurement strength. Here we employ this effect over two orders of magnitude in readout power, made possible by the unique combination of a dimer Josephson junction array amplifier with a large dynamic range, and the fact that the readout of our granular aluminum fluxonium artificial atom remained quantum-non-demolition (QND) at relatively large photon numbers in the readout resonator, up to $\overline{n} = 110$. Using Bayesian inference, this allows us to detect quantum jumps faster than the readout resonator response time $2/κ$, where $κ$ is the bandwidth of the readout resonator.