论文标题

通过高阻抗锡谐振器的3D整合对半导体双量子点的分散测量

Dispersive measurement of a semiconductor double quantum dot via 3D integration of a high-impedance TiN resonator

论文作者

Holman, Nathan, Rosenberg, D., Yost, D., Yoder, J. L., Das, R., Oliver, William D., McDermott, R., Eriksson, M. A.

论文摘要

半导体量子点中的旋转是由于其异常长的相干时间而成为低温量子处理器的候选者。缩放量子点旋转Qubits的一个主要挑战是密集的接线要求,因此很难设想制造大量的最近邻居耦合量子量,以进行错误校正。我们描述了一种解决此问题的方法,该方法通过使用高阻力超导谐振器将量子置于Quinters的2D网格单位单元区域$ 0.16〜 \ text {mm}^2 $使用3D集成使用。为了证明这种方法的生存能力,我们证明了3D整合的高阻抗锡谐振器与Si/Sige异质结构中的双量子点耦合。使用谐振器作为色散栅极传感器,我们将设备向下调整到单个电子状态,而SNR = 5.36受到谐振器点电容的限制。点和谐振系统的表征表明,可以在维持量子点的低电荷噪声指标以及改进的超导谐振器的负载质量因子($ Q_L = 2.14 \ times 10^4 $)的同时,进行高敏感性电荷检测,并具有高鼻息2 Queletity 2-Quibity的潜力。这项工作为具有空腔介导的相互作用的2D量子点量子阵列铺平了道路。

Spins in semiconductor quantum dots are a candidate for cryogenic quantum processors due to their exceptionally long coherence times. One major challenge to scaling quantum dot spin qubits is the dense wiring requirements, making it difficult to envision fabricating large arrays of nearest-neighbor-coupled qubits necessary for error correction. We describe a method to solve this problem by spacing the qubits out using high-impedance superconducting resonators with a 2D grid unit cell area of $0.16~\text{mm}^2$ using 3D integration. To prove the viability of this approach, we demonstrate 3D integration of a high-impedance TiN resonator coupled to a double quantum dot in a Si/SiGe heterostructure. Using the resonator as a dispersive gate sensor, we tune the device down to the single electron regime with an SNR = 5.36 limited by the resonator-dot capacitance. Characterization of the dot and resonator systems shows such integration can be done while maintaining low charge noise metrics for the quantum dots and with improved loaded quality factors for the superconducting resonator ($Q_L = 2.14 \times 10^4$), allowing for high-sensitivity charge detection and the potential for high fidelity 2-qubit gates. This work paves the way for 2D quantum dot qubit arrays with cavity mediated interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源