论文标题

使用单个癫痫发作脑电图记录的患者特异性癫痫发作预测

Patient-Specific Seizure Prediction Using Single Seizure Electroencephalography Recording

论文作者

Tariq, Zaid Bin, Iyengar, Arun, Marcuse, Lara, Su, Hui, Yener, Bülent

论文摘要

脑电图(EEG)是测量研究癫痫的大脑活动的重要方法,从而有助于预测癫痫发作。癫痫发作预测是一个活跃的研究领域,具有许多基于深度学习的方法,主导了最近解决此问题的文献。但是,这些模型需要记录大量患者特异性癫痫发作,以提取培训分类器的前室外和局部脑电图数据。值得注意的是,使用机器学习模型对癫痫发作预测的敏感性和特异性的提高是值得注意的。但是,由于非平稳的脑电图,需要大量的患者特异性癫痫发作和周期性的模型再培训,这在为患者设计实用装置方面遇到了困难。为了减轻这一过程,我们提出了一种基于暹罗神经网络的癫痫发作预测方法,该方法将小波转换为EEG Tensor作为卷积神经网络(CNN)作为检测EEG中变化点的基础网络的输入。与使用脑电图记录天数的文献中的解决方案相比,我们的方法只需要一次癫痫发作来进行训练,这将转化为少于十分钟的前和发作数据,同时仍然获得可比较的结果,与使用多次癫痫发作的癫痫发作预测的模型相当。

Electroencephalogram (EEG) is a prominent way to measure the brain activity for studying epilepsy, thereby helping in predicting seizures. Seizure prediction is an active research area with many deep learning based approaches dominating the recent literature for solving this problem. But these models require a considerable number of patient-specific seizures to be recorded for extracting the preictal and interictal EEG data for training a classifier. The increase in sensitivity and specificity for seizure prediction using the machine learning models is noteworthy. However, the need for a significant number of patient-specific seizures and periodic retraining of the model because of non-stationary EEG creates difficulties for designing practical device for a patient. To mitigate this process, we propose a Siamese neural network based seizure prediction method that takes a wavelet transformed EEG tensor as an input with convolutional neural network (CNN) as the base network for detecting change-points in EEG. Compared to the solutions in the literature, which utilize days of EEG recordings, our method only needs one seizure for training which translates to less than ten minutes of preictal and interictal data while still getting comparable results to models which utilize multiple seizures for seizure prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源