论文标题
估计俄亥俄州SARS-COV-2的血清阳性:一种贝叶斯多级后延伸方法,并具有多种诊断测试
Estimating Seroprevalence of SARS-CoV-2 in Ohio: A Bayesian Multilevel Poststratification Approach with Multiple Diagnostic Tests
论文作者
论文摘要
在全球范围内,SARS-COV-2冠状病毒感染了超过5,900万人,造成超过139万人的造成。设计和监测干预措施以减慢并停止病毒的传播需要了解有多少人已经被感染,他们的住所以及他们的互动方式。第一步是对过去感染的人口流行的准确评估。 SARS-COV-2冠状病毒的人口代表性患病率研究很少,只有两个美国州(印第安纳州和康涅狄格州)报告了基于概率的样本调查,这些样本调查表征了SARS-COV-2冠状病毒的全州范围患病率。一个困难之一是,检测和表征SARS-COV-2冠状病毒抗体的测试是新的,并且表征不佳,并且通常功能较差。在2020年7月,一项代表美国俄亥俄州所有成年人的调查收集了与SARS-COV-2冠状病毒有关的保护行为的生物标志物和信息。调查的几个特征使得很难估计过去的流行率:1)较低的反应率,2)阳性病例的数量很少,3)多次,质量较差的血清学测试被用于检测SARS-COV-2抗体的事实。我们描述了一种新的贝叶斯方法,用于分析同时解决这些挑战并表征选择性响应的潜在影响的生物标志物数据。该模型不需要调查样品权重,占多个不完美的抗体测试结果,并表征与样本调查以及多个不完美的,可能相关的测试相关的不确定性。
Globally the SARS-CoV-2 coronavirus has infected more than 59 million people and killed more than 1.39 million. Designing and monitoring interventions to slow and stop the spread of the virus require knowledge of how many people have been and are currently infected, where they live, and how they interact. The first step is an accurate assessment of the population prevalence of past infections. There are very few population-representative prevalence studies of the SARS-CoV-2 coronavirus, and only two American states -- Indiana and Connecticut -- have reported probability-based sample surveys that characterize state-wide prevalence of the SARS-CoV-2 coronavirus. One of the difficulties is the fact that the tests to detect and characterize SARS-CoV-2 coronavirus antibodies are new, not well characterized, and generally function poorly. During July, 2020, a survey representing all adults in the State of Ohio in the United States collected biomarkers and information on protective behavior related to the SARS-CoV-2 coronavirus. Several features of the survey make it difficult to estimate past prevalence: 1) a low response rate, 2) very low number of positive cases, and 3) the fact that multiple, poor quality serological tests were used to detect SARS-CoV-2 antibodies. We describe a new Bayesian approach for analyzing the biomarker data that simultaneously addresses these challenges and characterizes the potential effect of selective response. The model does not require survey sample weights, accounts for multiple, imperfect antibody test results, and characterizes uncertainty related to the sample survey and the multiple, imperfect, potentially correlated tests.