论文标题

MGIC:多移民通道神经网络体系结构

MGIC: Multigrid-in-Channels Neural Network Architectures

论文作者

Eliasof, Moshe, Ephrath, Jonathan, Ruthotto, Lars, Treister, Eran

论文摘要

我们提出了一种多移民通道(MGIC)方法,该方法可以解决参数数量相对于标准卷积神经网络(CNN)中的通道数的二次增长。因此,我们的方法解决了CNN中的冗余,这也被轻量级CNN的成功所揭示。轻巧的CNN可以达到与参数较少的标准CNN的可比精度。但是,权重的数量仍然随CNN的宽度四倍地缩放。我们的MGIC体系结构用MGIC对应物代替了每个CNN块,该块利用小组大小的嵌套分组汇集来解决此问题。 因此,我们提出的架构相对于网络的宽度线性扩展,同时保留了通道的完整耦合,如标准CNN中。 我们对图像分类,分割和点云分类进行的广泛实验表明,将此策略应用于Resnet和MobilenetV3(例如Resnet和Mobilenetv3),可以减少参数的数量,同时获得相似或更好的准确性。

We present a multigrid-in-channels (MGIC) approach that tackles the quadratic growth of the number of parameters with respect to the number of channels in standard convolutional neural networks (CNNs). Thereby our approach addresses the redundancy in CNNs that is also exposed by the recent success of lightweight CNNs. Lightweight CNNs can achieve comparable accuracy to standard CNNs with fewer parameters; however, the number of weights still scales quadratically with the CNN's width. Our MGIC architectures replace each CNN block with an MGIC counterpart that utilizes a hierarchy of nested grouped convolutions of small group size to address this. Hence, our proposed architectures scale linearly with respect to the network's width while retaining full coupling of the channels as in standard CNNs. Our extensive experiments on image classification, segmentation, and point cloud classification show that applying this strategy to different architectures like ResNet and MobileNetV3 reduces the number of parameters while obtaining similar or better accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源