论文标题
一项多面体研究,用于未约束的旅行锦标赛问题
A Polyhedral Study for the Cubic Formulation of the Unconstrained Traveling Tournament Problem
论文作者
论文摘要
我们考虑了不受限制的旅行锦标赛问题,这是一个运动时间表的问题,可以最大程度地减少团队旅行。自大约20年前引入以来,大多数研究都致力于建模和重新制定方法。在本文中,我们通过建立整数船体的维度以及模型不平等引起的面孔的维度,进行了一项用于立方整数编程公式的多面体研究。此外,我们引入了新的不平等现象,并表明它们是定义的。最后,我们评估了这些不平等现象对线性编程边界的影响。
We consider the unconstrained traveling tournament problem, a sports timetabling problem that minimizes traveling of teams. Since its introduction about 20 years ago, most research was devoted to modeling and reformulation approaches. In this paper we carry out a polyhedral study for the cubic integer programming formulation by establishing the dimension of the integer hull as well as of faces induced by model inequalities. Moreover, we introduce a new class of inequalities and show that they are facet-defining. Finally, we evaluate the impact of these inequalities on the linear programming bounds.