论文标题

使用局部深层隐式功能在LIDAR数据上完成语义场景完成

Semantic Scene Completion using Local Deep Implicit Functions on LiDAR Data

论文作者

Rist, Christoph B., Emmerichs, David, Enzweiler, Markus, Gavrila, Dariu M.

论文摘要

语义场景的完成是在给定范围内共同估计对象和表面的3D几何形状和语义的任务。这是稀疏且被遮挡的现实数据的一项特别具有挑战性的任务。我们提出了一个基于局部深层隐式函数的场景细分网络,作为一种基于新的学习完成方法的新方法。与以前的场景完成工作不同,我们的方法会产生不基于体素化的连续场景表示。我们将原始点云编码为本地和多个空间分辨率的潜在空间。随后从本地化功能补丁组装出一个全局场景完成功能。我们表明,这种连续的表示适合编码广泛的室外场景的几何和语义属性,而无需空间离散化(从而避免了场景细节和可以涵盖的场景范围之间的权衡)。 我们对语义Kitti数据集的语义注释的LiDAR扫描进行训练并评估我们的方法。我们的实验验证了我们的方法会生成一个强大的表示形式,可以将其解码为给定场景的密集3D描述。我们的方法的性能超过了语义KITTI场景完成基准的最新方法,从几何完整跨工会(IOU)角度来看。

Semantic scene completion is the task of jointly estimating 3D geometry and semantics of objects and surfaces within a given extent. This is a particularly challenging task on real-world data that is sparse and occluded. We propose a scene segmentation network based on local Deep Implicit Functions as a novel learning-based method for scene completion. Unlike previous work on scene completion, our method produces a continuous scene representation that is not based on voxelization. We encode raw point clouds into a latent space locally and at multiple spatial resolutions. A global scene completion function is subsequently assembled from the localized function patches. We show that this continuous representation is suitable to encode geometric and semantic properties of extensive outdoor scenes without the need for spatial discretization (thus avoiding the trade-off between level of scene detail and the scene extent that can be covered). We train and evaluate our method on semantically annotated LiDAR scans from the Semantic KITTI dataset. Our experiments verify that our method generates a powerful representation that can be decoded into a dense 3D description of a given scene. The performance of our method surpasses the state of the art on the Semantic KITTI Scene Completion Benchmark in terms of geometric completion intersection-over-union (IoU).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源