论文标题

优化的辅助粒子过滤器:通过凸优化调整混合物建议

Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization

论文作者

Branchini, Nicola, Elvira, Víctor

论文摘要

辅助粒子过滤器(APF)是一类用于状态空间模型中贝叶斯推断的顺序蒙特卡洛(SMC)方法。在其原始推导中,APFS使用辅助变量在扩展状态空间中运行以改进推理。在这项工作中,我们提出了优化的辅助粒子过滤器,该框架将传统的APF辅助变量解释为重量采样混合物建议中的权重。在这种解释下,我们设计了一种提出混合物权重的机制,该机制受到最新和适应性重要性采样的最新进展的启发。特别是,我们建议通过制定凸优化问题来选择混合物权重,以近似每个时间步中的过滤后验。此外,我们提出了一种加权方案,该方案将先前的结果推广到APF(Pitt等,2012),证明了我们的估计器的无偏见和一致性。我们的框架表明,与最新的粒子过滤器相比,在具有挑战性和广泛使用的动态模型中,与最先进的粒子过滤器相比,对一系列指标的估计值有了显着改善。

Auxiliary particle filters (APFs) are a class of sequential Monte Carlo (SMC) methods for Bayesian inference in state-space models. In their original derivation, APFs operate in an extended state space using an auxiliary variable to improve inference. In this work, we propose optimized auxiliary particle filters, a framework where the traditional APF auxiliary variables are interpreted as weights in an importance sampling mixture proposal. Under this interpretation, we devise a mechanism for proposing the mixture weights that is inspired by recent advances in multiple and adaptive importance sampling. In particular, we propose to select the mixture weights by formulating a convex optimization problem, with the aim of approximating the filtering posterior at each timestep. Further, we propose a weighting scheme that generalizes previous results on the APF (Pitt et al. 2012), proving unbiasedness and consistency of our estimators. Our framework demonstrates significantly improved estimates on a range of metrics compared to state-of-the-art particle filters at similar computational complexity in challenging and widely used dynamical models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源