论文标题
重新审视了金茨堡 - 兰道理论的超导体 - 绝缘体边界条件的微观推导。有和没有磁场的边界处的超导性增强
Microscopic derivation of superconductor-insulator boundary conditions for Ginzburg-Landau theory revisited. Enhanced superconductivity at boundaries with and without magnetic field
论文作者
论文摘要
使用标准的Bardeen-Cooper-Schrieffer(BCS)理论,我们修改了Ginzburg-Landau(GL)模型的超导体 - 绝缘体边界条件的微观衍生物。我们以表面积分形式获得对自由能的负贡献。传统超导体的边界条件具有$ \ textbf {n} \ cdot \nablaψ= \ text {const}ψ$的形式。这些表明这些是考虑到边界中反映的顺序参数之后。对于具有高阶衍生物和配对密度波状态的更通用的GL模型,边界条件也会得出。它表明,最近在BCS理论中发现的具有较高临界温度和边界差距增强的边界状态也存在于显微镜衍生的GL理论中。在应用外场的情况下,我们表明第三个临界磁场值$ H_ {C3} $高于DE GENNES边界条件的下面,并且在I型制度中也很重要。
Using the standard Bardeen-Cooper-Schrieffer (BCS) theory, we revise microscopic derivation of the superconductor-insulator boundary conditions for the Ginzburg-Landau (GL) model. We obtain a negative contribution to free energy in the form of surface integral. Boundary conditions for the conventional superconductor have the form $\textbf{n} \cdot \nabla ψ= \text{const} ψ$. These are shown to follow from considering the order parameter reflected in the boundary. The boundary conditions are also derived for more general GL models with higher-order derivatives and pair-density-wave states. It shows that the boundary states with higher critical temperature and the boundary gap enhancement, found recently in BCS theory, are also present in microscopically-derived GL theory. In the case of an applied external field, we show that the third critical magnetic-field value $H_{c3}$ is higher than what follows from the de Gennes boundary conditions and is also significant in type-I regime.