论文标题

对话状态跟踪的顺序到序列方法

A Sequence-to-Sequence Approach to Dialogue State Tracking

论文作者

Feng, Yue, Wang, Yang, Li, Hang

论文摘要

本文与以任务为导向的对话系统中的对话状态跟踪(DST)有关。尽管最近取得了重大进展,但建立一个非常有效的DST模块仍然是一个具有挑战性的问题。本文提出了一种新的对话状态跟踪方法,称为seq2seq-du,将DST形式化为序列到序列问题。 SEQ2SEQ-DU采用两个基于BERT的编码器来分别编码对话中的话语和架构的描述,这是一个计算说话嵌入和模式嵌入之间注意的观察者,以及一个解码器,以生成指针来代表对话的情况。 SEQ2SEQ-DU具有以下优势。它可以共同建模意图,插槽和插槽值。它可以利用基于伯特的话语和模式的丰富表示。它可以有效地处理分类和非类别插槽以及看不见的模式。此外,SEQ2SEQ-DU也可以用于对话系统的NLU(自然语言理解)模块中。在不同设置(SGD,MultiWoz2.2,MultiWoz2.1,Woz2.0,DSTC2,M2M,SNIPS和ATIS)中基准数据集的实验结果表明SEQ2SEQ-DU优于现有方法。

This paper is concerned with dialogue state tracking (DST) in a task-oriented dialogue system. Building a DST module that is highly effective is still a challenging issue, although significant progresses have been made recently. This paper proposes a new approach to dialogue state tracking, referred to as Seq2Seq-DU, which formalizes DST as a sequence-to-sequence problem. Seq2Seq-DU employs two BERT-based encoders to respectively encode the utterances in the dialogue and the descriptions of schemas, an attender to calculate attentions between the utterance embeddings and the schema embeddings, and a decoder to generate pointers to represent the current state of dialogue. Seq2Seq-DU has the following advantages. It can jointly model intents, slots, and slot values; it can leverage the rich representations of utterances and schemas based on BERT; it can effectively deal with categorical and non-categorical slots, and unseen schemas. In addition, Seq2Seq-DU can also be used in the NLU (natural language understanding) module of a dialogue system. Experimental results on benchmark datasets in different settings (SGD, MultiWOZ2.2, MultiWOZ2.1, WOZ2.0, DSTC2, M2M, SNIPS, and ATIS) show that Seq2Seq-DU outperforms the existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源