论文标题

多模式主观上下文建模和识别

Multi-Modal Subjective Context Modelling and Recognition

论文作者

Shen, Qiang, Teso, Stefano, Zhang, Wanyi, Xu, Hao, Giunchiglia, Fausto

论文摘要

诸如个人助理之类的应用程序需要了解用户的上下文,例如,他们在哪里,在做什么以及与谁在一起。上下文信息通常是从传感器数据(例如用户智能手机上的GPS传感器和加速度计)推断出的。此预测任务称为上下文识别。定义明确的上下文模型是成功认可的基础。但是,现有模型有两个主要限制。首先,它们集中在几个方面,例如位置或活动,这意味着基于Onthem的识别方法只能计算和利用几乎没有相关的相关性。其次,现有模型通常假定上下文是客观的,而在大多数应用程序中,可以从用户的角度看待上下文。忽略这些因素限制了上下文模型的实用性并阻碍了识别。我们提出了一个新颖的本体论文模型,该模型捕获了五个维度,即时间,位置,活动,社会关系和对象。此外,我们的模型定义了自然支持主观注释和推理的三个级别描述(客观上下文,机器上下文和主观上下文)。对现实世界数据的初始上下文识别实验暗示了我们的模型的承诺。

Applications like personal assistants need to be aware ofthe user's context, e.g., where they are, what they are doing, and with whom. Context information is usually inferred from sensor data, like GPS sensors and accelerometers on the user's smartphone. This prediction task is known as context recognition. A well-defined context model is fundamental for successful recognition. Existing models, however, have two major limitations. First, they focus on few aspects, like location or activity, meaning that recognition methods based onthem can only compute and leverage few inter-aspect correlations. Second, existing models typically assume that context is objective, whereas in most applications context is best viewed from the user's perspective. Neglecting these factors limits the usefulness of the context model and hinders recognition. We present a novel ontological context model that captures five dimensions, namely time, location, activity, social relations and object. Moreover, our model defines three levels of description(objective context, machine context and subjective context) that naturally support subjective annotations and reasoning.An initial context recognition experiment on real-world data hints at the promise of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源