论文标题
同态加密数据的量子密文减小方案
Quantum Ciphertext Dimension Reduction Scheme for Homomorphic Encrypted Data
论文作者
论文摘要
目前,面对云计算中庞大而复杂的数据,量子计算的并行计算能力尤为重要。量子主成分分析算法用作量子状态层析成像的方法。我们在特征分解后对密度矩阵的特征值基质进行特征提取,以实现降低性降低,拟议的量子主分量提取算法(QPCE)。与经典算法相比,该算法在某些条件下实现了指数加速。给出了量子电路的特定实现。考虑到客户端的有限计算能力,我们提出了一个量子同型密文减少方案(QHEDR),客户端可以加密量子数据并将其上传到云中进行计算。并通过量子同构加密方案来确保安全性。计算完成后,客户端将在本地更新密钥,并解密了密文结果。我们已经实施了量子云中实施的量子密文减少方案,该方案不需要交互并确保安全。此外,我们在IBM的真实计算平台上的QPCE算法上进行了实验验证,并给出了一个简单的示例,即在云中执行混合量子电路以验证我们方案的正确性。实验结果表明,该算法可以安全有效地进行密文减少。
At present, in the face of the huge and complex data in cloud computing, the parallel computing ability of quantum computing is particularly important. Quantum principal component analysis algorithm is used as a method of quantum state tomography. We perform feature extraction on the eigenvalue matrix of the density matrix after feature decomposition to achieve dimensionality reduction, proposed quantum principal component extraction algorithm (QPCE). Compared with the classic algorithm, this algorithm achieves an exponential speedup under certain conditions. The specific realization of the quantum circuit is given. And considering the limited computing power of the client, we propose a quantum homomorphic ciphertext dimension reduction scheme (QHEDR), the client can encrypt the quantum data and upload it to the cloud for computing. And through the quantum homomorphic encryption scheme to ensure security. After the calculation is completed, the client updates the key locally and decrypts the ciphertext result. We have implemented a quantum ciphertext dimensionality reduction scheme implemented in the quantum cloud, which does not require interaction and ensures safety. In addition, we have carried out experimental verification on the QPCE algorithm on IBM's real computing platform, and given a simple example of executing hybrid quantum circuits in the cloud to verify the correctness of our scheme. Experimental results show that the algorithm can perform ciphertext dimension reduction safely and effectively.