论文标题
具有凸电势的离散非线性klein-gordon系统的局部时间周期性解决方案
Localised time-periodic solutions of discrete nonlinear Klein-Gordon systems with convex on-site potentials
论文作者
论文摘要
证明了具有凸电势的一般一维非线性klein-gordon系统的非零局部周期溶液的存在。局部解决方案的存在问题是根据某些适当函数空间上的操作员的固定点方程表示的,该功能空间通过Schauder的固定点定理解决。
The existence of nonzero localised periodic solutions for general one-dimensional discrete nonlinear Klein-Gordon systems with convex on-site potentials is proved. The existence problem of localised solutions is expressed in terms of a fixed point equation for an operator on some appropriate function space which is solved by means of Schauder's Fixed Point Theorem.