论文标题
基于注意力的变压器,例如微观结构中细胞的分割
Attention-Based Transformers for Instance Segmentation of Cells in Microstructures
论文作者
论文摘要
检测和分割对象实例是生物医学应用中的常见任务。示例范围从检测功能磁共振图像的病变到组织病理学图像中肿瘤的检测以及从显微镜图像中提取定量的单细胞信息,其中细胞分割是主要的瓶颈。基于注意力的变压器是一系列深度学习领域的最先进。最近,他们提出了他们开始优于其他方法的细分任务。我们提出了一种新型的基于注意的细胞检测变压器(单元格),用于直接端到端实例分割。虽然分割性能与最新实例分割方法相当,但单元格更简单,更快。我们在系统或合成生物学中通常使用的微结构环境中分割酵母的典型用例中展示了该方法的贡献。对于特定用例,所提出的方法超过了语义分割的最新工具,并预测了单个对象实例。快速准确的实例分割性能增加了后验数据处理的实验信息产量,并在线监视实验和闭环最佳实验设计可行。
Detecting and segmenting object instances is a common task in biomedical applications. Examples range from detecting lesions on functional magnetic resonance images, to the detection of tumours in histopathological images and extracting quantitative single-cell information from microscopy imagery, where cell segmentation is a major bottleneck. Attention-based transformers are state-of-the-art in a range of deep learning fields. They have recently been proposed for segmentation tasks where they are beginning to outperforming other methods. We present a novel attention-based cell detection transformer (Cell-DETR) for direct end-to-end instance segmentation. While the segmentation performance is on par with a state-of-the-art instance segmentation method, Cell-DETR is simpler and faster. We showcase the method's contribution in a the typical use case of segmenting yeast in microstructured environments, commonly employed in systems or synthetic biology. For the specific use case, the proposed method surpasses the state-of-the-art tools for semantic segmentation and additionally predicts the individual object instances. The fast and accurate instance segmentation performance increases the experimental information yield for a posteriori data processing and makes online monitoring of experiments and closed-loop optimal experimental design feasible.