论文标题
控制港口港口系统的控制能量最少
Control of port-Hamiltonian systems with minimal energy supply
论文作者
论文摘要
我们研究了具有控制约束的线性港口港口系统的最佳控制,其中一个人旨在以最小的能源供应进行状态过渡。将状态空间分解为耗散和非疾病(即保守)子空间,我们表明一组可达状态是有限的W.R.T.耗散子空间。我们证明,最佳控制问题在非截止性子空间中表现出收费公路特性,即,对于不同的初始条件和时间范围而言,最佳状态轨迹大部分时间都接近保守的子空间。我们分析了相应的稳态优化问题,并证明所有最佳稳态都位于非截止性子空间中。我们通过机械师的数值示例来说明这些结果来结束本文。
We investigate optimal control of linear port-Hamiltonian systems with control constraints, in which one aims to perform a state transition with minimal energy supply. Decomposing the state space into dissipative and non-dissipative (i.e. conservative) subspaces, we show that the set of reachable states is bounded w.r.t. the dissipative subspace. We prove that the optimal control problem exhibits the turnpike property with respect to the non-dissipative subspace, i.e., for varying initial conditions and time horizons optimal state trajectories evolve close to the conservative subspace most of the time. We analyze the corresponding steady-state optimization problem and prove that all optimal steady states lie in the non-dissipative subspace. We conclude this paper by illustrating these results by a numerical example from mechanics.