论文标题
分析动态估计定位精度的数据驱动方法
Analysing the Data-Driven Approach of Dynamically Estimating Positioning Accuracy
论文作者
论文摘要
定位系统的主要期望是他们为用户提供对其位置的可靠估计。可以极大地帮助用户利用位置估计值的其他信息是定位系统将其分配给其产生的位置估算的不确定性水平。在该领域的文献中,在过去的十年中,已经对指纹定位系统的位置估算准确性进行了动态估计的概念进行了零星的讨论,在该文献中,已经提出了基于域知识的手工制作的规则。物联网设备的出现以及来自低功率广泛区域网络(LPWANS)的数据的扩散促进了数据驱动的方法的概念化,以确定对位置估计的估计确定性。在这项工作中,我们分析了确定动态准确性估计(DAE)的数据驱动方法,并在定位系统的更广泛背景下考虑它。更具体地说,通过使用公共Lorawan数据集,当前的工作分析:在确定位置估计值和DAE任务之间的可用培训设置,选择最可靠估计的子集的概念,以及数据的空间分布的影响,数据的空间分布必须使DAE的准确性。这项工作概述了在定位系统的整体设计中,DAE确定的数据驱动方法。
The primary expectation from positioning systems is for them to provide the users with reliable estimates of their position. An additional piece of information that can greatly help the users utilize position estimates is the level of uncertainty that a positioning system assigns to the position estimate it produced. The concept of dynamically estimating the accuracy of position estimates of fingerprinting positioning systems has been sporadically discussed over the last decade in the literature of the field, where mainly handcrafted rules based on domain knowledge have been proposed. The emergence of IoT devices and the proliferation of data from Low Power Wide Area Networks (LPWANs) have facilitated the conceptualization of data-driven methods of determining the estimated certainty over position estimates. In this work, we analyze the data-driven approach of determining the Dynamic Accuracy Estimation (DAE), considering it in the broader context of a positioning system. More specifically, with the use of a public LoRaWAN dataset, the current work analyses: the repartition of the available training set between the tasks of determining the location estimates and the DAE, the concept of selecting a subset of the most reliable estimates, and the impact that the spatial distribution of the data has to the accuracy of the DAE. The work provides a wide overview of the data-driven approach of DAE determination in the context of the overall design of a positioning system.