论文标题
地震相分析:一种深层域的适应方法
Seismic Facies Analysis: A Deep Domain Adaptation Approach
论文作者
论文摘要
深度神经网络(DNN)可以从大量标记的输入数据中准确学习,但是当标记的数据稀缺时,通常不会这样做。 DNN有时无法概括从不同输入分布中采样的ontest数据。无监督的深区适应(DDA)技术在没有可用标签时已被证明是有用的,并且在目标域(TD)中观察到分布变化时。在本研究中,对来自荷兰海上(源域; SD)的F3块3D数据集的地震图像进行了实验。考虑到具有相似反射模式的SD和TD的三个地质类别。当很少的类具有数据稀缺时,提出了一个名为Earthadaptnet(EAN)的深神网络结构(EAN),以分段地震图像,我们使用转置残差单元来替换解码器块中传统的扩张卷积。 EAN的像素级准确度> 84%,少数族裔级别的准确度约为70%,与现有建筑相比,表现的性能提高了。此外,我们向EAN介绍了珊瑚(相关比对)方法,以创建一个无监督的深区适应网络(EAN-DDA),以分类F3和Penobscot的地震反射,以证明当标记数据不可用时可能会出现可能的方法。对于Penobscot的2类,达到的最高类准确性约为99%,总体精度> 50%。综上所述,EAN-DDA具有高精度对目标域地震相分类的分类。
Deep neural networks (DNNs) can learn accurately from large quantities of labeled input data, but often fail to do so when labelled data are scarce. DNNs sometimes fail to generalize ontest data sampled from different input distributions. Unsupervised Deep Domain Adaptation (DDA)techniques have been proven useful when no labels are available, and when distribution shifts are observed in the target domain (TD). In the present study, experiments are performed on seismic images of the F3 block 3D dataset from offshore Netherlands (source domain; SD) and Penobscot 3D survey data from Canada (target domain; TD). Three geological classes from SD and TD that have similar reflection patterns are considered. A deep neural network architecture named EarthAdaptNet (EAN) is proposed to semantically segment the seismic images when few classes have data scarcity, and we use a transposed residual unit to replace the traditional dilated convolution in the decoder block. The EAN achieved a pixel-level accuracy >84% and an accuracy of ~70% for the minority classes, showing improved performance compared to existing architectures. In addition, we introduce the CORAL (Correlation Alignment) method to the EAN to create an unsupervised deep domain adaptation network (EAN-DDA) for the classification of seismic reflections from F3 and Penobscot, to demonstrate possible approaches when labelled data are unavailable. Maximum class accuracy achieved was ~99% for class 2 of Penobscot, with an overall accuracy>50%. Taken together, the EAN-DDA has the potential to classify target domain seismic facies classes with high accuracy.