论文标题

电池电极中单粒子离子动力学和相变的Operando光学跟踪

Operando optical tracking of single-particle ion dynamics and phase transitions in battery electrodes

论文作者

Merryweather, Alice J., Schnedermann, Christoph, Jacquet, Quentin, Grey, Clare P., Rao, Akshay

论文摘要

推进锂离子电池技术,尤其是快速充电功能的关键是,我们能够在现实条件下,实时以及纳米尺度上遵循和理解操作材料中发生的动态过程。当前,锂离子动力学的操作成像需要复杂的同步加速器X射线或电子显微镜技术,这并不适合高通量材料筛选。这限制了快速,合理的材料改进。在这里,我们介绍了一个简单的基于实验室的光学干涉散射显微镜,以解决电池材料中的纳米镜锂离子动力学,并应用其遵循原型阴极材料的重复循环,li $ _ \ textit {x} $ coo $ _2 $。该方法使我们能够直接在该材料中直接可视化绝缘体 - 金属溶液和锂排序相变。我们在单粒子水平上确定锂插入和去除的速率,并确定在电荷和排放中发生的不同机制。最后,我们捕获了与单斜晶格失真相关的不同晶体方向之间的域边界的动态形成,该晶状体变形在li $ _ {0.5} $ COO $ _2 $左右。我们方法的高通量性质允许在整个电极中对许多粒子进行采样,并且向前迈进,可以探索位错,形态和循环速率对电池降解的作用。我们的成像概念的一般性意味着它可以应用于研究任何电池电极,更广泛地,离子的传输与电子或结构变化相关的系统,包括纳米离子膜,离子导电聚合物,光催化材料和回忆录。

Key to advancing lithium-ion battery technology, and in particular fast charging capabilities, is our ability to follow and understand the dynamic processes occurring in operating materials under realistic conditions, in real time, and on the nano- to meso-scale. Currently, operando imaging of lithium-ion dynamics requires sophisticated synchrotron X-ray or electron microscopy techniques, which do not lend themselves to high-throughput material screening. This limits rapid and rational materials improvements. Here we introduce a simple lab-based, optical interferometric scattering microscope to resolve nanoscopic lithium-ion dynamics in battery materials and apply it to follow the repeated cycling of the archetypical cathode material Li$_\textit{x}$CoO$_2$. The method allows us to visualise directly the insulator-metal, solid solution and lithium ordering phase transitions in this material. We determine rates of lithium insertion and removal at the single-particle level and identify different mechanisms that occur on charge vs. discharge. Finally, we capture the dynamic formation of domain boundaries between different crystal orientations associated with the monoclinic lattice distortion at around Li$_{0.5}$CoO$_2$. The high throughput nature of our methodology allows many particles to be sampled across the entire electrode and, moving forward, will enable exploration of the role of dislocations, morphologies and cycling rate on battery degradation. The generality of our imaging concept means that it can be applied to study any battery electrode, and more broadly, systems where the transport of ions is associated with electronic or structural changes, including nanoionic films, ionic conducting polymers, photocatalytic materials and memristors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源