论文标题
一种用于构建混沌系统解决方案的精确数值方法和算法
An Accurate Numerical Method and Algorithm for Constructing Solutions of Chaotic Systems
论文作者
论文摘要
在自然科学的各个领域,微分方程的混沌系统被认为超过50年。正确预测动态模型方程解决方案的行为对于理解进化过程并减少不确定性很重要。但是,经常使用的数值方法无法在很大的时间段上进行。在本文中,作者考虑了以肿瘤生长模型为例,用于构建混乱系统解决方案的现代数值方法和算法。还对Benettin算法进行了修改,以计算Lyapunov指数的计算。
In various fields of natural science, the chaotic systems of differential equations are considered more than 50 years. The correct prediction of the behaviour of solutions of dynamical model equations is important in understanding of evolution process and reduce uncertainty. However, often used numerical methods are unable to do it on large time segments. In this article, the author considers the modern numerical method and algorithm for constructing solutions of chaotic systems on the example of tumor growth model. Also a modification of Benettin's algorithm presents for calculation of Lyapunov exponents.