论文标题

使用机器学习预测杂质光谱功能

Predicting impurity spectral functions using machine learning

论文作者

Sturm, Erica J., Carbone, Matthew R., Lu, Deyu, Weichselbaum, Andreas, Konik, Robert M.

论文摘要

安德森杂质模型(AIM)是量子多体物理学的规范模型。在这里,我们调查了机器学习模型,即神经网络(NN)和内核脊回归(KRR)是否可以准确预测从空轨道到混合价到Kondo的所有机制中的AIM光谱功能。为了解决这个问题,我们构建了两个大光谱数据库,其中包含单通道杂质问题的大约410K和600K光谱函数。我们表明,NN模型可以准确地预测其所有机制中的AIM频谱函数,在标准化单元中,点的平均绝对误差降至0.003。我们发现,受过训练的NN模型优于基于KRR的模型,并以$ 10^5 $的速度享受传统目标求解器的订单。使用AIM参数空间中的最远点采样,可以大大减少我们模型的训练集的所需大小,这对于将我们的方法推广到更复杂的多通道杂质问题与预测真实材料的性质相关的问题很重要。

The Anderson Impurity Model (AIM) is a canonical model of quantum many-body physics. Here we investigate whether machine learning models, both neural networks (NN) and kernel ridge regression (KRR), can accurately predict the AIM spectral function in all of its regimes, from empty orbital, to mixed valence, to Kondo. To tackle this question, we construct two large spectral databases containing approximately 410k and 600k spectral functions of the single-channel impurity problem. We show that the NN models can accurately predict the AIM spectral function in all of its regimes, with point-wise mean absolute errors down to 0.003 in normalized units. We find that the trained NN models outperform models based on KRR and enjoy a speedup on the order of $10^5$ over traditional AIM solvers. The required size of the training set of our model can be significantly reduced using furthest point sampling in the AIM parameter space, which is important for generalizing our method to more complicated multi-channel impurity problems of relevance to predicting the properties of real materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源