论文标题
通过Terahertz近场纳米镜检查揭示半导体纳米射线光电探测器的检测动力学
Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy
论文作者
论文摘要
半导体纳米线现场效应晶体管是开发室温(RT)Terahertz(THZ)频率光检测器的有前途的平台,这是由于其传递特性的强非线性以及其低噪声等效功率的显着组合(<1 NW/HZ $^{1/2 {1/2} $)和高响应性(<1 nw/hz $)和高电位(> 100 v/v)。在RT的THZ机制中,对于许多量子光学和纳米光子学的边界应用非常可取,将高灵敏度与高速(sub-ns)相结合的NANO工程型NW光电探测器非常可取,但这需要清楚地了解光响应的起源。但是,传统的电气测量和光学测量不能明确地确定由于固有的设备不对称而引起的主要检测机制,该机制允许同时激活不同的过程。在这里,我们通过高空间分辨率(35 nm)THZ光电流纳米镜检查创新地捕获了单个INAS纳米线的照片响应的快照。通过将THZ量子级联激光耦合到散射型扫描近场光学显微镜(S-SNOM)并监测电气和光学读数,我们同时测量传输和散射特性。空间解析的电响应提供了光疗电流或侧冲流电流的明确特征,它们的相互作用被讨论为光子密度和材料掺杂的函数,因此通过设计为工程师的照片响应提供了途径。
Semiconductor nanowire field-effect transistors represent a promising platform for the development of room-temperature (RT) terahertz (THz) frequency light detectors due to the strong nonlinearity of their transfer characteristics and their remarkable combination of low noise-equivalent powers (< 1 nW/Hz$^{1/2}$) and high responsivities (> 100 V/W). Nano-engineering a NW photodetector combining high sensitivity with high speed (sub-ns) in the THz regime at RT is highly desirable for many frontier applications in quantum optics and nanophotonics, but this requires a clear understanding of the origin of the photo-response. Conventional electrical and optical measurements, however, cannot unambiguously determine the dominant detection mechanism due to inherent device asymmetry that allows different processes to be simultaneously activated. Here, we innovatively capture snapshots of the photo-response of individual InAs nanowires via high spatial resolution (35 nm) THz photocurrent nanoscopy. By coupling a THz quantum cascade laser to scattering-type scanning near-field optical microscopy (s-SNOM) and monitoring both electrical and optical readouts, we simultaneously measure transport and scattering properties. The spatially resolved electric response provides unambiguous signatures of photo-thermoelectric or bolometric currents whose interplay is discussed as a function of photon density and material doping, therefore providing a route to engineer photo-responses by design.