论文标题

量子顺序假设检验

Quantum Sequential Hypothesis Testing

论文作者

Martínez-Vargas, Esteban, Hirche, Christoph, Sentís, Gael, Skotiniotis, Michalis, Carrizo, Marta, Muñoz-Tapia, Ramon, Calsamiglia, John

论文摘要

我们通过关注量子假设检验的基本任务来介绍量子信息处理中的顺序分析。尤其是我们的目标是在可以按需需要的情况下,以规定的错误阈值($ε$)区分两个任意量子状态。我们获得完成任务所需的平均副本数量的最终下限。我们提供了一个块采样策略,该策略允许在某些类别的状态下实现下限。在对称设置和不对称设置中,界限都是最佳的,因为它需要所有其他过程中平均数量最少的副本,包括提前修复副本数量的过程。对于Qubit状态,我们为最小平均副本数量提供明确的表达式,并表明基于固定本地测量的顺序策略优于预定数量的副本上的最佳集体测量。对于一般状态,副本的数量增加为$ \ log 1/ε$,对于纯状态策略,即使在完美歧视的情况下,即使$ε= 0 $也需要有限的样本数量。

We introduce sequential analysis in quantum information processing, by focusing on the fundamental task of quantum hypothesis testing. In particular our goal is to discriminate between two arbitrary quantum states with a prescribed error threshold, $ε$, when copies of the states can be required on demand. We obtain ultimate lower bounds on the average number of copies needed to accomplish the task. We give a block-sampling strategy that allows to achieve the lower bound for some classes of states. The bound is optimal in both the symmetric as well as the asymmetric setting in the sense that it requires the least mean number of copies out of all other procedures, including the ones that fix the number of copies ahead of time. For qubit states we derive explicit expressions for the minimum average number of copies and show that a sequential strategy based on fixed local measurements outperforms the best collective measurement on a predetermined number of copies. Whereas for general states the number of copies increases as $\log 1/ε$, for pure states sequential strategies require a finite average number of samples even in the case of perfect discrimination, i.e., $ε=0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源