论文标题

酒吧:细胞拓扑和布局的联合搜索,以进行准确有效的二进制体系结构

BARS: Joint Search of Cell Topology and Layout for Accurate and Efficient Binary ARchitectures

论文作者

Zhao, Tianchen, Ning, Xuefei, Shi, Xiangsheng, Yang, Songyi, Liang, Shuang, Lei, Peng, Chen, Jianfei, Yang, Huazhong, Wang, Yu

论文摘要

二元神经网络(BNN)由于有希望的效率而受到了极大的关注。目前,大多数BNN研究直接采用广泛使用的CNN体​​系结构,这对于BNN而言可能是最佳的。本文提出了一种新颖的二进制架构搜索(BAR)流,以发现大型设计空间中的优质二进制体系结构。具体而言,我们分析了与拓扑和布局架构设计选择相关的信息瓶颈。我们建议自动搜索最佳信息流。为了实现这一目标,我们设计了一个为BNN量身定制的两级(宏观和微型)搜索空间,并应用可区分的神经体系结构搜索(NAS)来有效地探索此搜索空间。宏观搜索空间包括宽度和深度决策,这是更好地平衡模型性能和复杂性所必需的。我们还设计了微观搜索空间,以增强BNN的信息流。 %BNN体系结构搜索的一个显着挑战在于二进制操作加剧了可区分NAS的“崩溃”问题,为此,我们将各种搜索并得出稳定搜索过程的策略。在CIFAR-10上,与现有的BNN NAS研究相比,2/3二进制操作和1/10 Floating-Point操作的精度提高了1.5%。在ImageNet上,由于资源消耗类似,与手工制作的二进制RESNET-18架构相比,酒吧发现的体系结构可获得6%的准确性增长,并且优于其他二进制体系结构,同时将架构骨干置于实现。

Binary Neural Networks (BNNs) have received significant attention due to their promising efficiency. Currently, most BNN studies directly adopt widely-used CNN architectures, which can be suboptimal for BNNs. This paper proposes a novel Binary ARchitecture Search (BARS) flow to discover superior binary architecture in a large design space. Specifically, we analyze the information bottlenecks that are related to both the topology and layout architecture design choices. And we propose to automatically search for the optimal information flow. To achieve that, we design a two-level (Macro & Micro) search space tailored for BNNs and apply a differentiable neural architecture search (NAS) to explore this search space efficiently. The macro-level search space includes width and depth decisions, which is required for better balancing the model performance and complexity. We also design the micro-level search space to strengthen the information flow for BNN. %A notable challenge of BNN architecture search lies in that binary operations exacerbate the "collapse" problem of differentiable NAS, for which we incorporate various search and derive strategies to stabilize the search process. On CIFAR-10, BARS achieves 1.5% higher accuracy with 2/3 binary operations and 1/10 floating-point operations comparing with existing BNN NAS studies. On ImageNet, with similar resource consumption, BARS-discovered architecture achieves a 6% accuracy gain than hand-crafted binary ResNet-18 architectures and outperforms other binary architectures while fully binarizing the architecture backbone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源