论文标题
使用数字图像相关性和晶体可塑性有限元模拟对滑动和双活性的表征:应用到正交$α$ -uranium
Characterisation of slip and twin activity using digital image correlation and crystal plasticity finite element simulation: Application to orthorhombic $α$-uranium
论文作者
论文摘要
校准和验证晶体可塑性材料模型是一个重大挑战,特别是对于具有许多潜在滑移和双系统系统的材料而言。在这里,我们在拉伸测试期间与晶体可塑性有限元模拟一起使用粗粒$α$ uranium上的数字图像相关性。这种方法使我们能够确定关键的分解剪切应力以及不同滑动和双系统系统的硬化速率。本构模型基于位错密度,作为状态变量,模拟几何形状是由电子反向散射衍射图像构建的,这些衍射图像提供了形状,大小和方向,从而可以直接比较虚拟实验和真实实验。一种优化算法用于查找随着负载增加的每个晶粒中平均应力演变的重现的模型参数。一个包含四个与载荷方向对齐的晶粒的拉伸条用于用八个未知参数校准模型。然后,通过模拟第二张拉伸条中的应变分布来独立验证该方法。评估了双胞胎系统硬化的不同机制。最活跃的双胞胎系统的潜在硬化是由共面双胞胎和滑动确定的。最活跃的滑动系统的硬化速率低于细粒$α$ uranium中的硬化速率。本研究中开发的方法可用于确定其他粗粒物材料的关键分辨剪应力和硬化参数。
Calibrating and verifying crystal plasticity material models is a significant challenge, particularly for materials with a number of potential slip and twin systems. Here we use digital image correlation on coarse-grained $α$-uranium during tensile testing in conjunction with crystal plasticity finite element simulations. This approach allows us to determine the critical resolved shear stress, and hardening rate of the different slip and twin systems. The constitutive model is based on dislocation densities as state variables and the simulated geometry is constructed from electron backscatter diffraction images that provide shape, size and orientation of the grains, allowing a direct comparison between virtual and real experiments. An optimisation algorithm is used to find the model parameters that reproduce the evolution of the average strain in each grain as the load is increased. A tensile bar, containing four grains aligned with the load direction, is used to calibrate the model with eight unknown parameters. The approach is then independently validated by simulating the strain distribution in a second tensile bar. Different mechanisms for the hardening of the twin systems are evaluated. The latent hardening of the most active twin system turns out to be determined by coplanar twins and slip. The hardening rate of the most active slip system is lower than in fine-grained $α$-uranium. The method developed in the present research can be applied to identify the critical resolved shear stress and hardening parameters of other coarse-grained materials.