论文标题

时间信号分类的非自主方程发现方法

A non-autonomous equation discovery method for time signal classification

论文作者

Yoon, Ryeongkyung, Bhat, Harish S., Osting, Braxton

论文摘要

在无限层限制下的某些神经网络体系结构导致非线性微分方程的系统。在这个想法的动机上,我们开发了一个基于非自治动力学方程的时间信号的框架。我们将时间信号视为控制时间不断发展的隐藏变量的动态系统的强迫函数。与方程发现一样,动态系统使用函数字典表示,并且从数据中学到了系数。该框架应用于时间信号分类问题。我们展示了如何使用伴随方法有效地计算梯度,并应用了来自动态系统的方法来建立分类器的稳定性。通过各种实验,在合成数据集和实际数据集上,我们表明所提出的方法使用的参数少于竞争方法,同时实现了可比的精度。我们使用增加复杂性的动态系统创建了合成数据集;尽管地面真相矢量场通常是多项式的,但我们始终发现傅立叶词典会产生最好的结果。我们还展示了所提出的方法如何以相肖像的形式产生图形解释性。

Certain neural network architectures, in the infinite-layer limit, lead to systems of nonlinear differential equations. Motivated by this idea, we develop a framework for analyzing time signals based on non-autonomous dynamical equations. We view the time signal as a forcing function for a dynamical system that governs a time-evolving hidden variable. As in equation discovery, the dynamical system is represented using a dictionary of functions and the coefficients are learned from data. This framework is applied to the time signal classification problem. We show how gradients can be efficiently computed using the adjoint method, and we apply methods from dynamical systems to establish stability of the classifier. Through a variety of experiments, on both synthetic and real datasets, we show that the proposed method uses orders of magnitude fewer parameters than competing methods, while achieving comparable accuracy. We created the synthetic datasets using dynamical systems of increasing complexity; though the ground truth vector fields are often polynomials, we find consistently that a Fourier dictionary yields the best results. We also demonstrate how the proposed method yields graphical interpretability in the form of phase portraits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源