论文标题
微型航空车的模型预测控制:调查
Model Predictive Control for Micro Aerial Vehicles: A Survey
论文作者
论文摘要
本文介绍了微型航空车的模型预测控制策略的设计和应用,尤其是多趋势配置(例如四型)。该域中的各种作品是根据通过线性或非线性动力学优化的控制定律,状态和输入约束的整合,可能的耐故障设计的整合,如果使用加固学习方法以及控制器是否引用自由飞机或其他任务(例如物理相互作用或负载交通或负载交通),则组织了各种作品。还提出了一组选定的比较结果,并用于提供有关线性和非线性方案之间选择的洞察力,预测范围的调整,基于干扰观察者的无偏置跟踪的重要性以及此类方法对参数不确定的固有鲁棒性。此外,提出了有关现代深度强化学习技术和多旋转型车辆模型预测控制的最新研究趋势的概述。最后,这篇评论以明确的讨论结束了有关选定的开源软件包的讨论,这些软件包提供了适用于各种微型航空车辆配置的现成模型预测控制功能。
This paper presents a review of the design and application of model predictive control strategies for Micro Aerial Vehicles and specifically multirotor configurations such as quadrotors. The diverse set of works in the domain is organized based on the control law being optimized over linear or nonlinear dynamics, the integration of state and input constraints, possible fault-tolerant design, if reinforcement learning methods have been utilized and if the controller refers to free-flight or other tasks such as physical interaction or load transportation. A selected set of comparison results are also presented and serve to provide insight for the selection between linear and nonlinear schemes, the tuning of the prediction horizon, the importance of disturbance observer-based offset-free tracking and the intrinsic robustness of such methods to parameter uncertainty. Furthermore, an overview of recent research trends on the combined application of modern deep reinforcement learning techniques and model predictive control for multirotor vehicles is presented. Finally, this review concludes with explicit discussion regarding selected open-source software packages that deliver off-the-shelf model predictive control functionality applicable to a wide variety of Micro Aerial Vehicle configurations.