论文标题

在Exascale的领域科学中整合深度学习

Integrating Deep Learning in Domain Sciences at Exascale

论文作者

Archibald, Rick, Chow, Edmond, D'Azevedo, Eduardo, Dongarra, Jack, Eisenbach, Markus, Febbo, Rocco, Lopez, Florent, Nichols, Daniel, Tomov, Stanimire, Wong, Kwai, Yin, Junqi

论文摘要

本文提出了设计深度学习人工智能(AI)并将其与传统的高性能计算(HPC)模拟集成的一些当前挑战。我们评估了现有软件包的能力,可以有效地在大规模的HPC系统上运行深度学习模型和应用程序,并确定挑战,并提出针对当前大规模异构系统和即将到来的Exascale Systems的新的异步并行化和优化技术。这些开发以及现有的HPC AI软件功能已集成到Magmadnn,这是一个开源HPC深度学习框架。许多深度学习框架都是针对数据科学家的,并且在将质量集成到现有的HPC工作流程中却差不多。本文讨论了HPC深度学习框架的必要性,以及如何通过与现有的HPC库(例如Magma及其模块化内存管理),MPI,Cublas,Cublas,Cublas,Cudnn,MKL和HIP的深入集成来提供这些需求(例如,如在Magmadnn中)。还通过在降低和混合精液中使用算法增强以及异步优化方法来说明进步。最后,我们介绍了使用AI在ORNL和UTK上增强传统计算和数据密集型应用程序的插图和潜在解决方案。材料科学,成像和气候应用中说明了方法和未来的挑战。

This paper presents some of the current challenges in designing deep learning artificial intelligence (AI) and integrating it with traditional high-performance computing (HPC) simulations. We evaluate existing packages for their ability to run deep learning models and applications on large-scale HPC systems efficiently, identify challenges, and propose new asynchronous parallelization and optimization techniques for current large-scale heterogeneous systems and upcoming exascale systems. These developments, along with existing HPC AI software capabilities, have been integrated into MagmaDNN, an open-source HPC deep learning framework. Many deep learning frameworks are targeted at data scientists and fall short in providing quality integration into existing HPC workflows. This paper discusses the necessities of an HPC deep learning framework and how those needs can be provided (e.g., as in MagmaDNN) through a deep integration with existing HPC libraries, such as MAGMA and its modular memory management, MPI, CuBLAS, CuDNN, MKL, and HIP. Advancements are also illustrated through the use of algorithmic enhancements in reduced- and mixed-precision, as well as asynchronous optimization methods. Finally, we present illustrations and potential solutions for enhancing traditional compute- and data-intensive applications at ORNL and UTK with AI. The approaches and future challenges are illustrated in materials science, imaging, and climate applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源