论文标题

平滑颗粒流体动力学稀疏镶嵌

Sparse Inpainting with Smoothed Particle Hydrodynamics

论文作者

Daropoulos, Viktor, Augustin, Matthias, Weickert, Joachim

论文摘要

数字图像介绍是指用于通过利用可用图像信息来重建损坏或不完整的图像的技术。这项工作的主要目的是用平滑的粒子流体动力学(SPH)技术从一组稀疏分布的图像样品中执行图像介绍过程。由于,在其幼稚的公式中,SPH技术甚至都无法再现恒定功能,因此我们修改了获得可以重现常数和线性函数的近似方法的方法。此外,我们研究了Voronoi Tessellation的使用来定义SPH方法中的必要参数,并选择了最佳位置的图像样本。除了这种空间优化外,还实施了数据值的优化,以进一步改善结果。除了传统的高斯平滑核之外,我们还评估了其他内核在随机和空间优化的面膜上的性能。由于在图像中具有明确优选方向的物体的情况下,各向同性平滑核的使用并不是最佳的,因此我们还检查各向异性平滑核。我们的最终算法可以基于均匀或各向异性扩散过程以及基于示例性的方法来竞争良好的稀疏镶嵌技术。

Digital image inpainting refers to techniques used to reconstruct a damaged or incomplete image by exploiting available image information. The main goal of this work is to perform the image inpainting process from a set of sparsely distributed image samples with the Smoothed Particle Hydrodynamics (SPH) technique. As, in its naive formulation, the SPH technique is not even capable of reproducing constant functions, we modify the approach to obtain an approximation which can reproduce constant and linear functions. Furthermore, we examine the use of Voronoi tessellation for defining the necessary parameters in the SPH method as well as selecting optimally located image samples. In addition to this spatial optimization, optimization of data values is also implemented in order to further improve the results. Apart from a traditional Gaussian smoothing kernel, we assess the performance of other kernels on both random and spatially optimized masks. Since the use of isotropic smoothing kernels is not optimal in the presence of objects with a clear preferred orientation in the image, we also examine anisotropic smoothing kernels. Our final algorithm can compete with well-performing sparse inpainting techniques based on homogeneous or anisotropic diffusion processes as well as with exemplar-based approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源