论文标题

SCGAN:具有生成对抗网络的显着图引导着色

SCGAN: Saliency Map-guided Colorization with Generative Adversarial Network

论文作者

Zhao, Yuzhi, Po, Lai-Man, Cheung, Kwok-Wai, Yu, Wing-Yin, Rehman, Yasar Abbas Ur

论文摘要

鉴于灰度照片,着色系统估计了视觉上合理的彩色图像。传统方法通常使用语义来使灰度图像着色。但是,在这些方法中,仅嵌入分类语义信息,从而在最终有色图像中导致语义混乱和颜色出血。为了解决这些问题,我们提出了具有生成对抗网络(SCGAN)框架的全自动显着图引导的着色。它可以共同预测着色和显着图,以最大程度地减少色彩图像中的语义混乱和颜色出血。由于预先训练的VGG-16灰色网络的全局功能嵌入到着色编码中,因此所提出的SCGAN可以接受比最先进的方法少得多的数据,以实现感知合理的着色。此外,我们提出了一种基于显着图的新型指导方法。着色解码器的分支用于预测显着性图作为代理目标。此外,为了增强视觉感知性能,分别将两个分层鉴别器用于生成的着色和显着图。在成像网验证集上评估了所提出的系统。实验结果表明,与最新技术相比,SCGAN可以生成更合理的色彩图像。

Given a grayscale photograph, the colorization system estimates a visually plausible colorful image. Conventional methods often use semantics to colorize grayscale images. However, in these methods, only classification semantic information is embedded, resulting in semantic confusion and color bleeding in the final colorized image. To address these issues, we propose a fully automatic Saliency Map-guided Colorization with Generative Adversarial Network (SCGAN) framework. It jointly predicts the colorization and saliency map to minimize semantic confusion and color bleeding in the colorized image. Since the global features from pre-trained VGG-16-Gray network are embedded to the colorization encoder, the proposed SCGAN can be trained with much less data than state-of-the-art methods to achieve perceptually reasonable colorization. In addition, we propose a novel saliency map-based guidance method. Branches of the colorization decoder are used to predict the saliency map as a proxy target. Moreover, two hierarchical discriminators are utilized for the generated colorization and saliency map, respectively, in order to strengthen visual perception performance. The proposed system is evaluated on ImageNet validation set. Experimental results show that SCGAN can generate more reasonable colorized images than state-of-the-art techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源