论文标题

从自由生活可穿戴数据中的生理表征的自学转移学习

Self-supervised transfer learning of physiological representations from free-living wearable data

论文作者

Spathis, Dimitris, Perez-Pozuelo, Ignacio, Brage, Soren, Wareham, Nicholas J., Mascolo, Cecilia

论文摘要

可穿戴设备(例如智能手表)正在成为越来越受欢迎的工具,可以在自由生活条件下客观地监视体育活动。迄今为止,研究主要集中于纯监督人类活动识别的任务,这表明在推断低级信号的高级健康结果方面的成功有限。在这里,我们使用没有语义标签的活动和心率(HR)信号提出了一种新颖的自我监督表示方法(HR)信号。通过深层神经网络,我们将人力资源响应设置为活动数据的监督信号,利用其潜在的生理关系。此外,我们提出了一种自定义分位数损失函数,该功能解释了一般人群中存在的长尾人力资源分布。 我们在最大的自由活动组合数据集(包括> 280k小时的手腕加速度计和可穿戴的ECG数据)中评估了我们的模型。我们的贡献是两个方面:i)预训练任务创建了一个模型,该模型只能基于廉价的活动传感器来准确预测HR,ii)我们通过提出一种简单的方法来汇总从窗口级到用户级别的简单方法来利用通过此任务捕获的信息。值得注意的是,我们表明嵌入可以通过使用线性分类器转移学习来概括各种下游任务,从而捕获具有生理意义的个性化信息。例如,它们可用于预测与个人的健康,健身和人口统计学特征相关的变量,表现优于无监督的自动编码器和常见的生物标志物。总体而言,我们提出了第一种多模式自学方法,用于行为和生理数据,对大规模的健康和生活方式监测有影响。

Wearable devices such as smartwatches are becoming increasingly popular tools for objectively monitoring physical activity in free-living conditions. To date, research has primarily focused on the purely supervised task of human activity recognition, demonstrating limited success in inferring high-level health outcomes from low-level signals. Here, we present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels. With a deep neural network, we set HR responses as the supervisory signal for the activity data, leveraging their underlying physiological relationship. In addition, we propose a custom quantile loss function that accounts for the long-tailed HR distribution present in the general population. We evaluate our model in the largest free-living combined-sensing dataset (comprising >280k hours of wrist accelerometer & wearable ECG data). Our contributions are two-fold: i) the pre-training task creates a model that can accurately forecast HR based only on cheap activity sensors, and ii) we leverage the information captured through this task by proposing a simple method to aggregate the learnt latent representations (embeddings) from the window-level to user-level. Notably, we show that the embeddings can generalize in various downstream tasks through transfer learning with linear classifiers, capturing physiologically meaningful, personalized information. For instance, they can be used to predict variables associated with individuals' health, fitness and demographic characteristics, outperforming unsupervised autoencoders and common bio-markers. Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源