论文标题
通过磁盘实现M-均匀的四色超图
Realizing an m-uniform four-chromatic hypergraph with disks
论文作者
论文摘要
我们证明,对于每一个$ m $,都有一个有限的点集$ \ MATHCAL {p} $在飞机上,以至于无论$ \ Mathcal {p} $是三色的,总有一个圆盘,完全包含$ m $点,所有同一颜色。这改善了Pach,Tardos和Tóth的结果,他们对两种颜色证明了这一点。结构的主要成分是一个子构建,其点位于凸位。也就是说,我们表明,对于每$ m $,都有一个有限点集合$ \ mathcal {p} $在凸位置的飞机上,以便无论$ \ nathcal {p} $是两色的,总有一个完全包含$ m $点的磁盘,所有相同的颜色。我们还证明,对于单元磁盘,没有类似的结构可以起作用,还有其他几个结果。
We prove that for every $m$ there is a finite point set $\mathcal{P}$ in the plane such that no matter how $\mathcal{P}$ is three-colored, there is always a disk containing exactly $m$ points, all of the same color. This improves a result of Pach, Tardos and Tóth who proved the same for two colors. The main ingredient of the construction is a subconstruction whose points are in convex position. Namely, we show that for every $m$ there is a finite point set $\mathcal{P}$ in the plane in convex position such that no matter how $\mathcal{P}$ is two-colored, there is always a disk containing exactly $m$ points, all of the same color. We also prove that for unit disks no similar construction can work, and several other results.