论文标题

ranstop:硬件辅助运行时加密货币软件检测技术

RanStop: A Hardware-assisted Runtime Crypto-Ransomware Detection Technique

论文作者

Pundir, Nitin, Tehranipoor, Mark, Rahman, Fahim

论文摘要

在许多盛行的恶意软件中,加密货币软件构成了巨大的威胁,因为它通过未经授权的加密来拒绝访问其文档,并将其文档人质持有并勒索了他们,从而对用户进行了财务勒索影响的用户。这将导致全球数百万美元的年度损失。勒索软件的多种变体正在增长,随着许多依赖静态执行签名的许多反病毒和仅使用软件的恶意软件检测方案的逃避功能。在本文中,我们提出了一种名为Ranstop的硬件辅助方案,以供早日检测商品处理器中的加密软件感染。 Ranstop利用现代处理器的性能监控单元中嵌入的硬件性能计数器的信息来观察微构造事件集并检测已知的和未知的加密货币软件变体。在本文中,我们使用长期短期内存(LSTM)模型培训了基于神经网络的机器学习体系结构,以分析硬件域中的微构造事件,当时执行多个勒索软件的变体以及良性程序。我们使用相关HPC的信息创建时间表来开发固有的统计特征,并提高RANSTOP的检测准确性,并通过LSTM和全球平均池降低噪声。作为早期检测方案,从程序执行开始时,Ranstop可以在2ms之内准确,快速识别勒索软件,通过分析每100US分开的20个时间戳的HPC信息。对于勒索软件而言,该检测时间为时过早,无法造成任何重大损害(如果没有)。此外,对良性程序的验证与加密软件的行为(以子程序为中心)相似,这表明RANSTOP可以检测五十个随机试验的平均精度为97%的勒索软件。

Among many prevailing malware, crypto-ransomware poses a significant threat as it financially extorts affected users by creating denial of access via unauthorized encryption of their documents as well as holding their documents hostage and financially extorting them. This results in millions of dollars of annual losses worldwide. Multiple variants of ransomware are growing in number with capabilities of evasion from many anti-viruses and software-only malware detection schemes that rely on static execution signatures. In this paper, we propose a hardware-assisted scheme, called RanStop, for early detection of crypto-ransomware infection in commodity processors. RanStop leverages the information of hardware performance counters embedded in the performance monitoring unit in modern processors to observe micro-architectural event sets and detects known and unknown crypto-ransomware variants. In this paper, we train a recurrent neural network-based machine learning architecture using long short-term memory (LSTM) model for analyzing micro-architectural events in the hardware domain when executing multiple variants of ransomware as well as benign programs. We create timeseries to develop intrinsic statistical features using the information of related HPCs and improve the detection accuracy of RanStop and reduce noise by via LSTM and global average pooling. As an early detection scheme, RanStop can accurately and quickly identify ransomware within 2ms from the start of the program execution by analyzing HPC information collected for 20 timestamps each 100us apart. This detection time is too early for a ransomware to make any significant damage, if none. Moreover, validation against benign programs with behavioral (sub-routine-centric) similarity with that of a crypto-ransomware shows that RanStop can detect ransomware with an average of 97% accuracy for fifty random trials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源