论文标题
在与表面自动形态相关的二次形式及其在奇异理论上的应用
On a quadratic form associated with a surface automorphism and its applications to Singularity Theory
论文作者
论文摘要
我们研究了带有边界$σ$的真实表面的伪周期性自动形态$ h $的nilpotent零件$ n'$。我们将表面$σ$的第一个同源性组(相对于边界)定义的二次形式$ q $。使用映射类群体理论的扭曲公式和技术,我们证明,如果与某些与某些ennuli相关的螺钉数字相关,则在杀死$ {\ ker n} $后获得的形式$ \ tilde {q} $都是正定确定的。我们还证明,$ \ tilde Q $限制$σ$的绝对同源性组,即使每当尼尔森·瑟斯顿(Nielsen-Thurston)图的商在自动形态的作用下都是一棵树。详细讨论了Milnor纤维的单肌自动形态$σ= f $的曲线细菌曲线的f $,并进行了详细讨论,上述结果专门针对这种情况。此外,如多个示例所示,表格$ \ tilde {q} $是可以根据双分辨率或可半合理的缩小图来计算的。与$ \ tilde {q} $相关的数值不变性能够区分具有不同拓扑类型但相同光谱对的平面曲线奇点。最后,我们讨论了在超溶的表面上定义的通用线元。在这种情况下,管道图不是一棵树,$ \ tilde q $限制了$σ= f $的绝对单曲子的限制。
We study the nilpotent part $N'$ of a pseudo-periodic automorphism $h$ of a real oriented surface with boundary $Σ$. We associate a quadratic form $Q$ defined on the first homology group (relative to the boundary) of the surface $Σ$. Using the twist formula and techniques from mapping class group theory, we prove that the form $\tilde{Q}$ obtained after killing ${\ker N}$ is positive definite if all the screw numbers associated with certain orbits of annuli are positive. We also prove that the restriction of $\tilde Q$ to the absolute homology group of $Σ$ is even whenever the quotient of the Nielsen-Thurston graph under the action of the automorphism is a tree. The case of monodromy automorphisms of Milnor fibers $Σ=F$ of germs of curves on normal surface singularities is discussed in detail, and the aforementioned results are specialized to such situation. Moreover, the form $\tilde{Q}$ is computable in terms of the dual resolution or semistable reduction graph, as illustrated with several examples. Numerical invariants associated with $\tilde{Q}$ are able to distinguish plane curve singularities with different topological types but same spectral pairs. Finally, we discuss a generic linear germ defined on a superisolated surface. In this case the plumbing graph is not a tree and the restriction of $\tilde Q$ to the absolute monodromy of $Σ=F$ is not even.