论文标题
热带精制不变的多项式特性
Polynomiality properties of tropical refined invariants
论文作者
论文摘要
曲折表面的热带精致不变性构成了通过热带几何形状在真实和复杂的枚举几何形状之间引人入胜的插值。它们最初是由Block和Göttsche引入的,在理性曲线的情况下,Göttsche和Schroeter进一步扩展了它们。 在本文中,我们研究了这些热带精制不变的系数的多项式行为。我们证明,当固定后者的属时,小型代码的系数是列出曲线的牛顿多边形的多项式。这在某种形式的双重设置中以某种方式提供了所谓的节点多项式和Göttsche猜想的令人惊讶的复兴。我们的方法完全是组合的,因此我们的结果可能表明尚未研究的复杂枚举几何形状中的现象。 在特定的有理曲线情况下,我们通过包括记录$ψ$类的额外参数$ s $来扩展多项式结果。与$δ$的多项式相反,相对于$ s $的多项式性可能会从真正的枚举几何形状的Welschinger不变性方面的考虑中。这尤其是为了支持Göttsche-Schroeter不变的几何定义。
Tropical refined invariants of toric surfaces constitute a fascinating interpolation between real and complex enumerative geometries via tropical geometry. They were originally introduced by Block and Göttsche, and further extended by Göttsche and Schroeter in the case of rational curves. In this paper, we study the polynomial behavior of coefficients of these tropical refined invariants. We prove that coefficients of small codegree are polynomials in the Newton polygon of the curves under enumeration, when one fixes the genus of the latter. This provides a somehow surprising resurgence, in some sort of dual setting, of the so-called node polynomials and Göttsche conjecture. Our methods are entirely combinatorial, hence our results may suggest phenomenons in complex enumerative geometry that have not been studied yet. In the particular case of rational curves, we extend our polynomiality results by including the extra parameter $s$ recording the number of $ψ$ classes. Contrary to the polynomiality with respect to $ Δ$, the one with respect to $s$ may be expected from considerations on Welschinger invariants in real enumerative geometry. This pleads in particular in favor of a geometric definition of Göttsche-Schroeter invariants.