论文标题
算术brauer群与几何brauer群的比较
Comparison of arithmetic Brauer groups with geometric Brauer groups
论文作者
论文摘要
让$ x $成为一个投射且流畅的$ k $。本文的目的是证明规范地图$ br(x)\ to br(x_ {k^s})^{g_k} $具有有限指数。两组都是自然不变的,这是由于考虑到$ x $的泰特猜想而产生的。
Let $X$ be a projective and smooth variety over a field $k$. The goal of this paper is to prove that the cokernel of the canonical map $Br(X)\to Br(X_{k^s})^{G_k}$ has a finite exponent. Both groups are natural invariants arising from consideration of the Tate conjecture of divisors over $X$.