论文标题

阳性对角线流的拓扑混合

Topological mixing of positive diagonal flows

论文作者

Dang, Nguyen-Thi

论文摘要

让$ g $为一个半简单的真实谎言组,没有紧凑的因素,而$γ<g $ a zariski密集,离散子组。我们研究了$γ\ Backslash g $上对角线流的拓扑动力学。我们将HOPF坐标扩展到$ g $的Bruhat-Hopf坐标,该框架为估算大型通用Loxodormic元素的椭圆形部分提供了框架。通过将Guivarc'h-Raugi的结果重写为Bruhat-Hopf坐标,我们将$γ\ Backslash g $的预先映射划分为一组非随机混合的常规Weyl室流,将其分为有限的许多动态结合的子集。我们证明了拓扑混合的必要条件,当cartan子组的中央器的身份的连接成分是Abelian时,我们证明这已经足够了。

Let $G$ be a semi-simple real Lie group without compact factors and $ Γ< G$ a Zariski dense, discrete subgroup. We study the topological dynamics of positive diagonal flows on $Γ\backslash G$. We extend Hopf coordinates to Bruhat-Hopf coordinates of $G$, which gives the framework to estimate the elliptic part of products of large generic loxodromic elements. By rewriting results of Guivarc'h-Raugi into Bruhat-Hopf coordinates, we partition the preimage in $Γ\backslash G$ of the non-wandering set of mixing regular Weyl chamber flows, into finitely many dynamically conjugated subsets. We prove a necessary condition for topological mixing, and when the connected component of the identity of the centralizer of the Cartan subgroup is abelian, we prove it is sufficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源