论文标题
没有剩下的子类:在粗粒分类问题中细粒度的鲁棒性
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
论文作者
论文摘要
在现实世界的分类任务中,每个类通常包括多个细粒的“子类”。由于子类标签通常不可用,因此仅使用粗粒类标签训练的型号通常在不同的子类中表现出高度可变的性能。这种现象被称为隐藏分层,对部署在诸如医学之类的安全性应用中的模型产生了重要的后果。我们提出了乔治,即即使子类标签未知,也可以测量和减轻隐藏分层的方法。我们首先观察到,未标记的子类在深神网络的特征空间中通常可以分离,并利用这一事实来通过聚类技术估算培训数据的子类标签。然后,我们将这些近似亚类标签用作分布强大的优化目标中的嘈杂监督的一种形式。从理论上讲,我们从任何子类中最严重的概括误差来表征乔治的性能。我们从经验上验证了乔治在现实世界和基准图像分类数据集的混合中验证,并表明我们的方法可以使最差的子类准确性提高22个百分点,而不是标准培训技术,而无需任何先前有关子类的信息。
In real-world classification tasks, each class often comprises multiple finer-grained "subclasses." As the subclass labels are frequently unavailable, models trained using only the coarser-grained class labels often exhibit highly variable performance across different subclasses. This phenomenon, known as hidden stratification, has important consequences for models deployed in safety-critical applications such as medicine. We propose GEORGE, a method to both measure and mitigate hidden stratification even when subclass labels are unknown. We first observe that unlabeled subclasses are often separable in the feature space of deep neural networks, and exploit this fact to estimate subclass labels for the training data via clustering techniques. We then use these approximate subclass labels as a form of noisy supervision in a distributionally robust optimization objective. We theoretically characterize the performance of GEORGE in terms of the worst-case generalization error across any subclass. We empirically validate GEORGE on a mix of real-world and benchmark image classification datasets, and show that our approach boosts worst-case subclass accuracy by up to 22 percentage points compared to standard training techniques, without requiring any prior information about the subclasses.