论文标题
几乎完全表征了单个设施位置的2代理确定性策略性机制,$ l_p $ space
Nearly Complete Characterization of 2-Agent Deterministic Strategyproof Mechanisms for Single Facility Location in $L_p$ Space
论文作者
论文摘要
我们考虑在$ l_p $ space($ 1 <p <\ infty $)中找到2个代理的单个设施的问题,并几乎完整地表征了这种确定性的策略性防止机制。我们使用$ L_P $空间中代理和设施之间的距离来表示代理的成本。机制是防策略的,如果没有代理人可以从虚假地报告私人位置来降低其成本。我们表明,在$ l_p $ space($ 1 <p <\ infty $)中,有2个代理,确定性,一致的,翻译不变的策略性防护机制的任何位置输出必须满足一组方程和机制是连续的,可扩展的。在一维空间中,输出必须是一个代理的位置,在任何$ n $ apents中都很容易证明。但是,在$ m $二维的空间($ m \ ge 2 $)中,情况将更加复杂,只有2个代理案件完成。我们表明,这种机制的输出必须满足一组方程,当$ p = 2 $时,输出必须在一个球体上定位,而两个代理之间的段为直径。此外,对于$ n $ agent的情况,我们发现,当尺寸$ m> 2 $时,这是2 $ 2 $的简单扩展,并证明了众所周知的一般中间机制将给出反例。特别是,在带有2个代理的$ L_2 $(即欧几里得)空间中,这种机制是旋转不变的,如果是独裁的;如果FF是第4节中的三种机制之一,则这种机制是匿名的。我们的工具意味着任何这种机制在任何多维空间中的最高成本都具有2个附属物的紧密下限。
We consider the problem of locating a single facility for 2 agents in $L_p$ space ($1<p<\infty$) and give a nearly complete characterization of such deterministic strategyproof mechanisms. We use the distance between an agent and the facility in $L_p$ space to denote the cost of the agent. A mechanism is strategyproof iff no agent can reduce her cost from misreporting her private location. We show that in $L_p$ space ($1<p<\infty$) with 2 agents, any location output of a deterministic, unanimous, translation-invariant strategyproof mechanism must satisfy a set of equations and mechanisms are continuous, scalable. In one-dimensional space, the output must be one agent's location, which is easy to prove in any $n$ agents. However, in $m$-dimensional space ($m\ge 2$), the situation will be much more complex, with only 2-agent case finished. We show that the output of such a mechanism must satisfy a set of equations, and when $p=2$ the output must locate at a sphere with the segment between the two agents as the diameter. Further more, for $n$-agent situations, we find that the simple extension of this the 2-agent situation cannot hold when dimension $m>2$ and prove that the well-known general median mechanism will give an counter-example. Particularly, in $L_2$ (i.e., Euclidean) space with 2 agents, such a mechanism is rotation-invariant iff it is dictatorial; and such a mechanism is anonymous iff it is one of the three mechanisms in Section 4. And our tool implies that any such a mechanism has a tight lower bound of 2-approximation for maximum cost in any multi-dimensional space.